Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 32(13): 1657-1677, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34024257

RESUMO

A series of amphiphilic block and random copolymers based on phenylboronic acid pinacol ester were synthesized via reversible addition-fragmentation chain transfer polymerization. The obtained copolymers can self-assemble in aqueous solution into stable block copolymer nanoparticles and random nanoparticles with sizes of 116.1-158.6 and 126.3-187.0 nm, respectively. All nanoparticles showed hydrogen peroxide (H2O2) sensitivity, and the random copolymer nanoparticles presented faster responsiveness to H2O2 than did those derived from block copolymers. Berberine (BBR) can be effectively encapsulated into block and random copolymer nanoparticles with loading capacity of 7.6%-9.1% and 7.3%-8.9%, respectively. The BBR release can be controlled in an H2O2 medium. For the random copolymer nanoparticles, the release rate of BBR was faster and the cumulative release amounts in response to H2O2 were higher over 48 h. The BBR cumulative release amount in the H2O2 medium for the block and random copolymer nanoparticles was 62.2%-70.2% and 68.6%-80.4%, respectively. Moreover, good biocompatibility was observed for the BBR-loaded block and random copolymer nanoparticles. BBR and BBR-loaded nanoparticles can improve Glut4 translocation to the cell membrane and promote glucose transport into cells. BBR-loaded nanoparticles can decrease the blood glucose levels in diabetic rats over 15 days. These results imply that the different chain formulation of block and random copolymers affects the H2O2 responsiveness and that the two kinds of nanoparticles exhibit potential application as novel vehicles for BBR delivery to regulate blood glucose levels.


Assuntos
Berberina , Diabetes Mellitus Experimental , Nanopartículas , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Peróxido de Hidrogênio , Ratos , Espécies Reativas de Oxigênio
2.
Int J Pharm ; 599: 120419, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647416

RESUMO

To evaluate the effect of polymer structures on their unique characteristics and antibacterial activity, this study focused on developing amphiphilic copolymers by using three different molecules through RAFT polymerization. Three amphiphilic copolymers, namely, PBMA-b-(PDMAEMA-r-PPEGMA) (BbDrE), (PBMA-r-PDMAEMA)-b-PPEGMA (BrDbE), and PBMA-r-PDMAEMA-r-PPEGMA (BrDrE), are successfully self-assembled into spherical or oval shaped nanoparticles in aqueous solution and remain stable in PBS, LB, and 10% FBS solutions for at least 3 days. The critical micelle concentrations are 0.012, 0.025, and 0.041 mg/mL for BbDrE, BrDbE, and BrDrE, respectively. The zeta potential values under pH 5.5 and pH 7.4 conditions are 3.18/0.19, 8.57/0.046, and 2.54/-0.69 mV for BbDrE, BrDbE, and BrDrE nanoparticles, respectively. The three copolymers with similar monomer compositions show similar molecular weight and thermostability. Baicalein (BA) and ciprofloxacin (CPX) are encapsulated into the three nanoparticles to obtain BbDrE@BA/CPX, BrDbE@BA/CPX, and BrDrE@BA/CPX nanocomposites, with LC values of 63.9/78.3, 63.9/74.7, and 55.3/64.8, respectively. The two drugs are released from the three drug-loaded nanocomposites with 60%-95% release in pH 5.5 over 24 h and 15%-30% release in pH 7.4. The drug-loaded nanocomposites show synergistic antibacterial activity than the naked drug (2-8 fold reduction for CPX) or single drug-loaded nanocomposites (4-8 fold reduction for CPX) against Pseudomonas aeruginosa and Staphylococcus aureus. The drug-loaded nanocomposites inhibit the formation of bacterial biofilms above their MIC values and eliminate bacterial biofilms observed by fluorescent microscope. Finally, the nanocomposites improve the healing of infection induced by P. aeruginosa and S. aureus on rat dermal wounds. These results indicate that antimicrobial agents with different structures could be an alternative treatment strategy for bacteria-induced infection.


Assuntos
Anti-Infecciosos , Nanopartículas , Animais , Antibacterianos/farmacologia , Flavanonas , Polímeros , Ratos , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA