Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 26(4): 743-755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546760

RESUMO

OBJECTIVE: The objective of this study is to analyze and verify the main drug components and targets of "Fuzi-Guizhi" in the treatment of osteoarthritis by using the network pharmacology platform. METHODS: The integrated pharmacology of "Fuzi-Guizhi" was analyzed by using the platform of integrated pharmacology of traditional Chinese medicine to explore its mechanism in the treatment of osteoarthritis. By establishing an arthritis model in vitro, the pharmacological effect of "aconitecassia twigs" on articular cartilage was evaluated and conducted for molecular docking. RESULTS: 28 candidate active components, 37 compound targets, and 583 osteoarthritis-related potential targets were screened, and 10 key target processes were screened in the protein interaction network model. Enrichment analysis showed that the 10 core targets involved 958 GO biologic function items and 76 KEGG signal pathways, which were mainly related to apoptosis and mitochondrial functional metabolism and "Fuzi-Guizhi" drug-containing serum inhibited the expression of Caspase-3 mRNA and protein in chondrocytes and promoted the synthesis of ATP. CONCLUSION: Our research is preliminary that the mechanism of action of "Fuzi-Guizhi" may inhibit chondrocyte degeneration by resisting mitochondrial apoptosis, and further experimental research is required to determine.


Assuntos
Diterpenos , Medicamentos de Ervas Chinesas , Osteoartrite , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoartrite/tratamento farmacológico , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia
2.
Front Oncol ; 12: 874900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664792

RESUMO

Ferroptosis, a type of iron-dependent oxidative cell death caused by excessive lipid peroxidation, is emerging as a promising cancer therapeutic strategy. Solasonine has been reported as a potential compound in tumor suppression, which is closely linked to ferroptosis. However, ferroptosis caused by solasonine is insufficiently identified and elaborated in lung adenocarcinoma, a fatal disease with high morbidity and mortality rates. First, the biochemical and morphological changes in Calu-1 and A549 cells exposed to solasonine are observed using a cell death assay and a microscope. The cell viability assay is performed after determining the executive concentration of solasonine to assess the effects of solasonine on tumor growth in Calu-1 and A549 cells. The ferroptosis is then identified by using ferroptosis-related reagents on CCK-8, lipid peroxidation assessment, Fe2+, and ROS detection. Furthermore, the antioxidant system, which includes GSH, Cys, GPx4, SLC7A11, and mitochondrial function, is measured to identify the potential pathways. According to the results, solasonine precisely exerts antitumor ability in lung adenocarcinoma cells. Ferroptosis is involved in the solasonine-induced cell death, as well as the accumulation of lipid peroxide, Fe2+, and ROS. Moreover, the failures of antioxidant defense and mitochondrial damage are considered to make a significant contribution to the occurrence of ferroptosis caused by solasonine. The study describes the potential process of ferroptosis caused by solasonine when dealing with lung adenocarcinoma. This encouraging evidence suggests that solasonine may be useful in the treatment of lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...