Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 276(Pt 2): 133962, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029833

RESUMO

Covalent and oriented immobilization of antibodies (Abs) can substantially improve the sensitivity and stability of solid-phase immunoassays. By modifying the natural Abs with functional groups that provide unique handles for further conjugation, Abs could be immobilized onto the solid matrices with uniform orientation. Herein, an effective approach for Fc-specific modification of Abs was developed for the oriented and covalent immobilization of Abs. Twelve photoreactive Z-domain variants, incorporated with a photoactivable probe (p-benzoyl-L-phenylalanine, Bpa) at different positions and carrying a C-terminal Cys-tag (i.e. ZBpa-Cys variants), were individually constructed and produced in Escherichia coli and tested for photo-cross-linking to various IgGs. The different ZBpa-Cys variants demonstrated large differences in photo-conjugation efficiency for the tested IgGs. The conjugation efficiencies of 17thZBpa-Cys ranged from 90 % to nearly 100 % for rabbit IgG and mouse IgG2a, IgG2b and IgG3. Other variants, including 5thZBpa-Cys, 18thZBpa-Cys, 32thZBpa-Cys, and 35thZBpa-Cys, also displayed conjugation efficiencies of 61 %-83 % for mouse IgG1, IgG2a and IgG3. Subsequently, the photo-modified Abs, namely IgG-Cys conjugates, were covalently immobilized onto a maleimide group-functionalized solid-phase carrier on the basis of the reaction of sulfhydryl and maleimide. Thus, a generic platform for the controlled and oriented immobilization of Abs was developed, and the efficacy and potential of the proposed approach for sensitive immunoassays was demonstrated by detecting human α-fetoprotein.

3.
Biomater Adv ; 159: 213814, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417206

RESUMO

Controllable preparation of materials with new structure has always been the top priority of polymer materials science research. Here, the supramolecular binding strategy is adopted to develop covalent organic frameworks (COFs) with novel structures and functions. Based on this, a two-dimensional crown-ether ring threaded covalent organic framework (COF), denoted as Crown-COPF with intrinsic photothermal (PTT) and photodynamic (PDT) therapeutic capacity, was facilely developed using crown-ether threaded rotaxane and porphyrin as building blocks. Crown-COPF with discrete mechanically interlocked blocks in the open pore could be used as a molecular machine, in which crown-ether served as the wheel sliding along the axle under the laser stimulation. As a result, Crown-COPF combining with the bactericidal power of crown ether displayed a significant photothermal and photodynamic antibacterial activity towards both the Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus), far exceeding the traditional Crown-free COF. Noteworthily, the bactericidal performance could be further enhanced via impregnation of Zn2+ ions (Crown-COPF-Zn) flexible coordinated with the multiple coordination sites (crown-ether, bipyridine, and porphyrin), which not only endow the positive charge with the skeleton, enhancing its ability to bind to the bacterial membrane, but also introduce the bactericidal ability of zinc ions. Notably, in vivo experiments on mice with back infections indicates Crown-COPF-Zn with self-adaptive multinuclear zinc center, could effectively promote the repairing of wounds. This study paves a new avenue for the effectively preparation of porous polymers with brand new structure, which provides opportunities for COF and mechanically interlocked polymers (MIPs) research and applications.


Assuntos
Éteres de Coroa , Ciclodextrinas , Estruturas Metalorgânicas , Poloxâmero , Porfirinas , Rotaxanos , Animais , Camundongos , Estruturas Metalorgânicas/farmacologia , Rotaxanos/farmacologia , Éteres de Coroa/farmacologia , Polímeros/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Íons , Zinco/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA