Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(8): e0079323, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37432119

RESUMO

Ergot alkaloids are fungal specialized metabolites that are important in agriculture and serve as sources of several pharmaceuticals. Aspergillus leporis is a soil saprotroph that possesses two ergot alkaloid biosynthetic gene clusters encoding lysergic acid amide production. We identified two additional, partial biosynthetic gene clusters within the A. leporis genome containing some of the ergot alkaloid synthesis (eas) genes required to make two groups of clavine ergot alkaloids, fumigaclavines and rugulovasines. Clavines possess unique biological properties compared to lysergic acid derivatives. Bioinformatic analyses indicated the fumigaclavine cluster contained functional copies of easA, easG, easD, easM, and easN. Genes resembling easQ and easH, which are required for rugulovasine production, were identified in a separate gene cluster. The pathways encoded by these partial, or satellite, clusters would require intermediates from the previously described lysergic acid amide pathway to synthesize a product. Chemical analyses of A. leporis cultures revealed the presence of fumigaclavine A. However, rugulovasine was only detected in a single sample, prompting a heterologous expression approach to confirm functionality of easQ and easH. An easA knockout strain of Metarhizium brunneum, which accumulates the rugulovasine precursor chanoclavine-I aldehyde, was chosen as expression host. Strains of M. brunneum expressing easQ and easH from A. leporis accumulated rugulovasine as demonstrated through mass spectrometry analysis. These data indicate that A. leporis is exceptional among fungi in having the capacity to synthesize products from three branches of the ergot alkaloid pathway and for utilizing an unusual satellite cluster approach to achieve that outcome. IMPORTANCE Ergot alkaloids are chemicals produced by several species of fungi and are notable for their impacts on agriculture and medicine. The ability to make ergot alkaloids is typically encoded by a clustered set of genes that are physically adjacent on a chromosome. Different ergot alkaloid classes are formed via branching of a complex pathway that begins with a core set of the same five genes. Most ergot alkaloid-producing fungi have a single cluster of genes that is complete, or self-sufficient, and produce ergot alkaloids from one or occasionally two branches from that single cluster. Our data show that Aspergillus leporis is exceptional in having the genetic capacity to make products from three pathway branches. Moreover, it uses a satellite cluster approach, in which gene products of partial clusters rely on supplementation with a chemical intermediate produced via another gene cluster, to diversify its biosynthetic potential without duplicating all the steps.


Assuntos
Alcaloides de Claviceps , Cromatografia Gasosa-Espectrometria de Massas , Alcaloides de Claviceps/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Família Multigênica
2.
Appl Environ Microbiol ; 89(6): e0041523, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212708

RESUMO

Opportunistically pathogenic fungi have varying potential to cause disease in animals. Factors contributing to their virulence include specialized metabolites, which in some cases evolved in contexts unrelated to pathogenesis. Specialized metabolites that increase fungal virulence in the model insect Galleria mellonella include the ergot alkaloids fumigaclavine C in Aspergillus fumigatus (syn. Neosartorya fumigata) and lysergic acid α-hydroxyethylamide (LAH) in the entomopathogen Metarhizium brunneum. Three species of Aspergillus recently found to accumulate high concentrations of LAH were investigated for their pathogenic potential in G. mellonella. Aspergillus leporis was most virulent, A. hancockii was intermediate, and A. homomorphus had very little pathogenic potential. Aspergillus leporis and A. hancockii emerged from and sporulated on dead insects, thus completing their asexual life cycles. Inoculation by injection resulted in more lethal infections than did topical inoculation, indicating that A. leporis and A. hancockii were preadapted for insect pathogenesis but lacked an effective means to breach the insect's cuticle. All three species accumulated LAH in infected insects, with A. leporis accumulating the most. Concentrations of LAH in A. leporis were similar to those observed in the entomopathogen M. brunneum. LAH was eliminated from A. leporis through a CRISPR/Cas9-based gene knockout, and the resulting strain had reduced virulence to G. mellonella. The data indicate that A. leporis and A. hancockii have considerable pathogenic potential and that LAH increases the virulence of A. leporis. IMPORTANCE Certain environmental fungi infect animals occasionally or conditionally, whereas others do not. Factors that affect the virulence of these opportunistically pathogenic fungi may have originally evolved to fill some other role for the fungus in its primary environmental niche. Among the factors that may improve the virulence of opportunistic fungi are specialized metabolites--chemicals that are not essential for basic life functions but provide producers with an advantage in particular environments or under specific conditions. Ergot alkaloids are a large family of fungal specialized metabolites that contaminate crops in agriculture and serve as the foundations of numerous pharmaceuticals. Our results show that two ergot alkaloid-producing fungi that were not previously known to be opportunistic pathogens can infect a model insect and that, in at least one of the species, an ergot alkaloid increases the virulence of the fungus.


Assuntos
Alcaloides de Claviceps , Animais , Alcaloides de Claviceps/metabolismo , Aspergillus/metabolismo , Aspergillus fumigatus/genética , Fungos/metabolismo , Insetos
3.
Microb Biotechnol ; 16(4): 742-756, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636806

RESUMO

Ergot alkaloids are a large family of fungal specialized metabolites that are important as toxins in agriculture and as the foundation of powerful pharmaceuticals. Fungi from several lineages and diverse ecological niches produce ergot alkaloids from at least one of several branches of the ergot alkaloid pathway. The biochemical and genetic bases for the different branches have been established and are summarized briefly herein. Several pathway branches overlap among fungal lineages and ecological niches, indicating activities of ergot alkaloids benefit fungi in different environments and conditions. Understanding the functions of the multiple genes in each branch of the pathway allows researchers to parse the abundant genomic sequence data available in public databases in order to assess the ergot alkaloid biosynthesis capacity of previously unexplored fungi. Moreover, the characterization of the genes involved in the various branches provides opportunities and resources for the biotechnological manipulation of ergot alkaloids for experimentation and pharmaceutical development.


Assuntos
Alcaloides de Claviceps , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Fungos/genética , Fungos/metabolismo
4.
BMC Res Notes ; 15(1): 183, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585609

RESUMO

OBJECTIVE: The fungus Metarhizium brunneum produces ergot alkaloids of the lysergic acid amide class, most abundantly lysergic acid α-hydroxyethylamide (LAH). Genes for making ergot alkaloids are clustered in the genomes of producers. Gene clusters of LAH-producing fungi contain an α/ß hydrolase fold protein-encoding gene named easP whose presence correlates with LAH production but whose contribution to LAH synthesis in unknown. We tested whether EasP contributes to LAH accumulation through gene knockout studies. RESULTS: We knocked out easP in M. brunneum via a CRISPR/Cas9-based approach, and accumulation of LAH was reduced to less than half the amount observed in the wild type. Because LAH accumulation was reduced and not eliminated, we identified and mutated the only close homolog of easP in the M. brunneum genome, a gene we named estA. An easP/estA double mutant did not differ from the easP mutant in lysergic acid amide accumulation, indicating estA had no role in the pathway. We conclude EasP contributes to LAH accumulation but is not absolutely required. Either a gene encoding redundant function and lacking sequence identity with easP resides outside the ergot alkaloid synthesis gene cluster, or EasP plays an accessory role in the synthesis of LAH.


Assuntos
Alcaloides de Claviceps , Metarhizium , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Dietilamida do Ácido Lisérgico/análogos & derivados , Metarhizium/genética , Metarhizium/metabolismo
5.
Commun Biol ; 4(1): 1362, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873267

RESUMO

Heritable microorganisms play critical roles in life cycles of many macro-organisms but their prevalence and functional roles are unknown for most plants. Bioactive ergot alkaloids produced by heritable Periglandula fungi occur in some morning glories (Convolvulaceae), similar to ergot alkaloids in grasses infected with related fungi. Ergot alkaloids have been of longstanding interest given their toxic effects, psychoactive properties, and medical applications. Here we show that ergot alkaloids are concentrated in four morning glory clades exhibiting differences in alkaloid profiles and are more prevalent in species with larger seeds than those with smaller seeds. Further, we found a phylogenetically-independent, positive correlation between seed mass and alkaloid concentrations in symbiotic species. Our findings suggest that heritable symbiosis has diversified among particular clades by vertical transmission through seeds combined with host speciation, and that ergot alkaloids are particularly beneficial to species with larger seeds. Our results are consistent with the defensive symbiosis hypothesis where bioactive ergot alkaloids from Periglandula symbionts protect seeds and seedlings from natural enemies, and provide a framework for exploring microbial chemistry in other plant-microbe interactions.


Assuntos
Convolvulaceae/microbiologia , Alcaloides de Claviceps/análise , Hypocreales/fisiologia , Simbiose , Hypocreales/química , Plântula/microbiologia , Sementes/microbiologia
6.
Appl Environ Microbiol ; 87(24): e0180121, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586904

RESUMO

Ergot alkaloids derived from lysergic acid have impacted humanity as contaminants of crops and as the bases of pharmaceuticals prescribed to treat dementia, migraines, and other disorders. Several plant-associated fungi in the Clavicipitaceae produce lysergic acid derivatives, but many of these fungi are difficult to culture and manipulate. Some Aspergillus species, which may be more ideal experimental and industrial organisms, contain an alternate branch of the ergot alkaloid pathway, but none were known to produce lysergic acid derivatives. We mined the genomes of Aspergillus species for ergot alkaloid synthesis (eas) gene clusters and discovered that three species, A. leporis, A. homomorphus, and A. hancockii, had eas clusters indicative of the capacity to produce a lysergic acid amide. In culture, A. leporis, A. homomorphus, and A. hancockii produced lysergic acid amides, predominantly lysergic acid α-hydroxyethylamide (LAH). Aspergillus leporis and A. homomorphus produced high concentrations of LAH and secreted most of their ergot alkaloid yield into the culture medium. Phylogenetic analyses indicated that genes encoding enzymes leading to the synthesis of lysergic acid were orthologous to those of the lysergic acid amide-producing Clavicipitaceae; however, genes to incorporate lysergic acid into an amide derivative evolved from different ancestral genes in the Aspergillus species. Our data demonstrate that fungi outside the Clavicipitaceae produce lysergic acid amides and indicate that the capacity to produce lysergic acid evolved once, but the ability to insert it into LAH evolved independently in Aspergillus species and the Clavicipitaceae. The LAH-producing Aspergillus species may be useful for the study and production of these pharmaceutically important compounds. IMPORTANCE Lysergic acid derivatives are specialized metabolites with historical, agricultural, and medical significance and were known heretofore only from fungi in one family, the Clavicipitaceae. Our data show that several Aspergillus species, representing a different family of fungi, also produce lysergic acid derivatives and that the ability to put lysergic acid into its amide forms evolved independently in the two lineages of fungi. From microbiological and pharmaceutical perspectives, the Aspergillus species may represent better experimental and industrial organisms than the currently employed lysergic acid producers of the plant-associated Clavicipitaceae. The observation that both lineages independently evolved the derivative lysergic acid α-hydroxyethylamide (LAH), among many possible lysergic acid amides, suggests selection for this metabolite.


Assuntos
Amidas/química , Aspergillus/química , Ácido Lisérgico , Aspergillus/genética , Evolução Biológica , Hypocreales , Ácido Lisérgico/química , Dietilamida do Ácido Lisérgico/análogos & derivados , Filogenia
7.
Appl Environ Microbiol ; 87(17): e0074821, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160271

RESUMO

Several fungi, including the plant root symbiont and insect pathogen Metarhizium brunneum, produce lysergic acid amides via a branch of the ergot alkaloid pathway. Lysergic acid amides include important pharmaceuticals and pharmaceutical lead compounds and have potential ecological significance, making knowledge of their biosynthesis relevant. Many steps in the biosynthesis of lysergic acid amides have been determined, but terminal steps in the synthesis of lysergic acid α-hydroxyethylamide (LAH)-by far the most abundant lysergic acid amide in M. brunneum-are unknown. Ergot alkaloid synthesis (eas) genes are clustered in the genomes of fungi that produce these compounds, and the eas clusters of LAH producers contain two uncharacterized genes (easO and easP) not found in fungi that do not produce LAH. Knockout of easO via a CRISPR-Cas9 approach eliminated LAH and resulted in accumulation of the alternate lysergic acid amides lysergyl-alanine and ergonovine. Despite the elimination of LAH, the total concentration of lysergic acid derivatives was not affected significantly by the mutation. Complementation with a wild-type allele of easO restored the ability to synthesize LAH. Substrate feeding studies indicated that neither lysergyl-alanine nor ergonovine were substrates for the product of easO (EasO). EasO had structural similarity to Baeyer-Villiger monooxygenases (BVMOs), and labeling studies with deuterated alanine supported a role for a BVMO in LAH biosynthesis. The easO knockout had reduced virulence to larvae of the insect Galleria mellonella, indicating that LAH contributes to virulence of M. brunneum on insects and that LAH has biological activities different from ergonovine and lysergyl-alanine. IMPORTANCE Fungi in the genus Metarhizium are important plant root symbionts and insect pathogens. They are formulated commercially to protect plants from insect pests. Several Metarhizium species, including M. brunneum, were recently shown to produce ergot alkaloids, a class of specialized metabolites studied extensively in other fungi because of their importance in agriculture and medicine. A biological role for ergot alkaloids in Metarhizium species had not been demonstrated previously. Moreover, the types of ergot alkaloids produced by Metarhizium species are lysergic acid amides, which have served directly or indirectly as important pharmaceutical compounds. The terminal steps in the synthesis of the most abundant lysergic acid amide in Metarhizium species and several other fungi (LAH) have not been determined. The results of this study demonstrate the role of a previously unstudied gene in LAH synthesis and indicate that LAH contributes to virulence of M. brunneum on insects.


Assuntos
Aminas/metabolismo , Proteínas Fúngicas/metabolismo , Ácido Lisérgico/metabolismo , Metarhizium/enzimologia , Oxigenases de Função Mista/metabolismo , Animais , Vias Biossintéticas , Proteínas Fúngicas/genética , Larva/microbiologia , Metarhizium/genética , Metarhizium/metabolismo , Metarhizium/patogenicidade , Oxigenases de Função Mista/genética , Mariposas/microbiologia , Virulência
8.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32769181

RESUMO

Ergot alkaloids are important specialized fungal metabolites that are used to make potent pharmaceuticals for neurological diseases and disorders. Lysergic acid (LA) and dihydrolysergic acid (DHLA) are desirable lead compounds for pharmaceutical semisynthesis but are typically transient intermediates in the ergot alkaloid and dihydroergot alkaloid pathways. Previous work with Neosartorya fumigata demonstrated strategies to produce these compounds as pathway end products, but their percent yield (percentage of molecules in product state as opposed to precursor state) was low. Moreover, ergot alkaloids in N. fumigata are typically retained in the fungus as opposed to being secreted. We used clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and heterologous expression approaches to engineer these compounds in Metarhizium brunneum, representing an alternate expression host from a different lineage of fungi. The relative percent yields of LA (86.9%) and DHLA (72.8%) were much higher than those calculated here for previously engineered strains of N. fumigata (2.6% and 2.0%, respectively). Secretion of these alkaloids also was measured, with averages of 98.4% of LA and 87.5% of DHLA being secreted into the growth medium; both values were significantly higher than those measured for the N. fumigata derivatives (both of which were less than 5.6% secreted). We used a similar approach to engineer a novel dihydroergot alkaloid in M. brunneum and, through high-performance liquid chromatography-mass spectrometry (LC-MS) analyses, provisionally identified it as the dihydrogenated form of lysergic acid α-hydroxyethylamide (dihydro-LAH). The engineering of these strains provides a strategy for producing novel and pharmaceutically important chemicals in a fungus more suitable for their production.IMPORTANCE Ergot alkaloids derived from LA or DHLA are the bases for numerous pharmaceuticals with applications in the treatment of dementia, migraines, hyperprolactinemia, and other conditions. However, extraction of ergot alkaloids from natural sources is inefficient, and their chemical synthesis is expensive. The ability to control and redirect ergot alkaloid synthesis in fungi may allow more efficient production of these important chemicals and facilitate research on novel derivatives. Our results show that Metarhizium brunneum can be engineered to efficiently produce and secrete LA and DHLA and, also, to produce a novel derivative of DHLA not previously found in nature. The engineering of dihydroergot alkaloids, including a novel species, is important because very few natural sources of these compounds are known. Our approach establishes a platform with which to use M. brunneum to study the production of other ergot alkaloids, specifically those classified as lysergic acid amides and dihydroergot alkaloids.


Assuntos
Sistemas CRISPR-Cas , Alcaloides de Claviceps/metabolismo , Redes e Vias Metabólicas/genética , Metarhizium/genética , Metarhizium/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo
9.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32385081

RESUMO

Genomic sequence data indicate that certain fungi in the genus Metarhizium have the capacity to produce lysergic acid-derived ergot alkaloids, but accumulation of ergot alkaloids in these fungi has not been demonstrated previously. We assayed several Metarhizium species grown under different conditions for accumulation of ergot alkaloids. Isolates of M. brunneum and M. anisopliae accumulated the lysergic acid amides lysergic acid α-hydroxyethyl amide, ergine, and ergonovine on sucrose-yeast extract agar but not on two other tested media. Isolates of six other Metarhizium species did not accumulate ergot alkaloids on sucrose-yeast extract agar. Conidia of M. brunneum lacked detectable ergot alkaloids, and mycelia of this fungus secreted over 80% of their ergot alkaloid yield into the culture medium. Isolates of M. brunneum, M. flavoviride, M. robertsii, M. acridum, and M. anisopliae produced high concentrations of ergot alkaloids in infected larvae of the model insect Galleria mellonella, but larvae infected with M. pingshaense, M. album, M. majus, and M. guizhouense lacked detectable ergot alkaloids. Alkaloid concentrations were significantly higher when insects were alive (as opposed to killed by freezing or gas) at the time of inoculation with M. brunneum Roots of corn and beans were inoculated with M. brunneum or M. flavoviride and global metabolomic analyses indicated that the inoculated roots were colonized, though no ergot alkaloids were detected. The data demonstrate that several Metarhizium species produce ergot alkaloids of the lysergic acid amide class and that production of ergot alkaloids is tightly regulated and associated with insect colonization.IMPORTANCE Our discovery of ergot alkaloids in fungi of the genus Metarhizium has agricultural and pharmaceutical implications. Ergot alkaloids produced by other fungi in the family Clavicipitaceae accumulate in forage grasses or grain crops; in this context they are considered toxins, though their presence also may deter or kill insect pests. Our data report ergot alkaloids in Metarhizium species and indicate a close association of ergot alkaloid accumulation with insect colonization. The lack of accumulation of alkaloids in spores of the fungi and in plants colonized by the fungi affirms the safety of using Metarhizium species as biocontrol agents. Ergot alkaloids produced by other fungi have been exploited to produce powerful pharmaceuticals. The class of ergot alkaloids discovered in Metarhizium species (lysergic acid amides) and their secretion into the growth medium make Metarhizium species a potential platform for future studies on ergot alkaloid synthesis and modification.


Assuntos
Alcaloides de Claviceps/metabolismo , Metarhizium/metabolismo , Especificidade da Espécie
10.
Fungal Ecol ; 41: 187-197, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31871487

RESUMO

Fungivorous millipedes (subterclass Colobognatha) likely represent some of the earliest known mycophagous terrestrial arthropods, yet their fungal partners remain elusive. Here we describe relationships between fungi and the fungivorous millipede, Brachycybe lecontii. Their fungal community is surprisingly diverse, including 176 genera, 39 orders, four phyla, and several undescribed species. Of particular interest are twelve genera conserved across wood substrates and millipede clades that comprise the core fungal community of B. lecontii. Wood decay fungi, long speculated to serve as the primary food source for Brachycybe species, were absent from this core assemblage and proved lethal to millipedes in pathogenicity assays while entomopathogenic Hypocreales were more common in the core but had little effect on millipede health. This study represents the first survey of fungal communities associated with any colobognath millipede, and these results offer a glimpse into the complexity of millipede fungal communities.

11.
J Chem Ecol ; 45(10): 879-887, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31686336

RESUMO

Many species of morning glories (Convolvulaceae) form symbioses with seed-transmitted Periglandula fungal endosymbionts, which produce ergot alkaloids and may contribute to defensive mutualism. Allocation of seed-borne ergot alkaloids to various tissues of several Ipomoea species has been demonstrated, including roots of I. tricolor. The goal of this study was to determine if infection of I. tricolor by the Periglandula sp. endosymbiont affects Southern root-knot nematode (Meloidogyne incognita) gall formation and host plant biomass. We hypothesized that I. tricolor plants infected by Periglandula (E+) would develop fewer nematode-induced galls compared to non-symbiotic plants (E-). E+ or E- status of plant lines was confirmed by testing methanol extracts from individual seeds for endosymbiont-produced ergot alkaloids. To test the effects of Periglandula on nematode colonization, E+ and E- I. tricolor seedlings were grown in soil infested with high densities of M. incognita nematodes (N+) or no nematodes (N-) for four weeks in the greenhouse before harvesting. After harvest, nematode colonization of roots was visualized microscopically, and total gall number and plant biomass were quantified. Four ergot alkaloids were detected in roots of E+ plants, but no alkaloids were found in E- plants. Gall formation was reduced by 50% in E+ plants compared to E- plants, independent of root biomass. Both N+ plants and E+ plants had significantly reduced biomass compared to N- and E- plants, respectively. These results demonstrate Periglandula's defensive role against biotic enemies, albeit with a potential trade-off with host plant growth.


Assuntos
Alcaloides de Claviceps/química , Hypocreales/metabolismo , Ipomoea/parasitologia , Tylenchoidea/fisiologia , Animais , Biomassa , Cromatografia Líquida de Alta Pressão , Alcaloides de Claviceps/análise , Ipomoea/química , Ipomoea/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Sementes/química , Sementes/metabolismo , Solo/parasitologia , Espectrometria de Massas por Ionização por Electrospray , Simbiose
12.
Fungal Ecol ; 41: 147-164, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31768192

RESUMO

Entomopathogenic fungi routinely kill their hosts before releasing infectious spores, but a few species keep insects alive while sporulating, which enhances dispersal. Transcriptomics- and metabolomics-based studies of entomopathogens with post-mortem dissemination from their parasitized hosts have unraveled infection processes and host responses. However, the mechanisms underlying active spore transmission by Entomophthoralean fungi in living insects remain elusive. Here we report the discovery, through metabolomics, of the plant-associated amphetamine, cathinone, in four Massospora cicadina-infected periodical cicada populations, and the mushroom-associated tryptamine, psilocybin, in annual cicadas infected with Massospora platypediae or Massospora levispora, which likely represent a single fungal species. The absence of some fungal enzymes necessary for cathinone and psilocybin biosynthesis along with the inability to detect intermediate metabolites or gene orthologs are consistent with possibly novel biosynthesis pathways in Massospora. The neurogenic activities of these compounds suggest the extended phenotype of Massospora that modifies cicada behavior to maximize dissemination is chemically-induced.

13.
Biochem Syst Ecol ; 862019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31496550

RESUMO

Convolvulaceous species have been reported to contain several bioactive principles thought to be toxic to livestock including the calystegines, swainsonine, ergot alkaloids, and indole diterpene alkaloids. Swainsonine, ergot alkaloids, and indole diterpene alkaloids are produced by seed transmitted fungal symbionts associated with their respective plant host, while the calystegines are produced by the plant. To date, Ipomoea asarifolia and Ipomoea muelleri represent the only Ipomoea species and members of the Convolvulaceae known to contain indole diterpene alkaloids, however several other Convolvulaceous species are reported to contain ergot alkaloids. To further explore the biodiversity of species that may contain indole diterpenes, we analyzed several Convolvulaceous species (n=30) for indole diterpene alkaloids, representing four genera, Argyreia, Ipomoea, Stictocardia, and Turbina, that had been previously reported to contain ergot alkaloids. These species were also verified to contain ergot alkaloids and subsequently analyzed for swainsonine. Ergot alkaloids were detected in 18 species representing all four genera screened, indole diterpenes were detected in two Argyreia species and eight Ipomoea species of the 18 that contained ergot alkaloids, and swainsonine was detected in two Ipomoea species. The data suggest a strong association exists between the relationship of the Periglandula species associated with each host and the occurrence of the ergot alkaloids and/or the indole diterpenes reported here. Likewise there appears to be an association between the occurrence of the respective bioactive principle and the genetic relatedness of the respective host plant species.

14.
Mycotoxin Res ; 34(4): 297-305, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30117108

RESUMO

The Ascomycete fungus Claviceps gigantea infects maize kernels and synthetizes several alkaloids, mostly dihydrolysergamides. There is limited information on the damage these toxins cause in mammals, despite reports from infested areas with 90% presence of the fungus sclerotia. With this background, it was decided to determine the biological activity of chemical compounds present in sclerotia of C. gigantea in rabbits 38 days after weaning. Sclerotia of C. gigantea were collected in fields with high incidence of the disease, ground and analysed for nutrients. Experimental diets were prepared with four treatments, where sclerotial powder was added, substituting for alfalfa flour in increasing proportions [C. gigantea/alfalfa flour (0:100, 5:95, 15:85 and 25:75)]. Total ergot alkaloid content was analysed by high-performance liquid chromatography. Male juvenile rabbits were utilised and distributed in completely randomised design with four replications. Initial weight was recorded in each animal, and experimental diet was offered. In this study, weight of animals, feed consumption and feed conversion were evaluated in individual animals. Blood samples were taken for haemograms, and finally euthanasia was practiced. The consumption of C. gigantea had a negative effect on body weight and feed consumption. The necropsies showed anomalies proportional to the consumption of feed contaminated with the fungus.


Assuntos
Ração Animal/microbiologia , Claviceps/química , Dieta/métodos , Alcaloides de Claviceps/toxicidade , Contaminação de Alimentos , Intoxicação/patologia , Animais , Peso Corporal , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Alcaloides de Claviceps/análise , Masculino , Coelhos , Desmame
15.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076193

RESUMO

Ergot alkaloids are specialized fungal metabolites with potent biological activities. They are encoded by well-characterized gene clusters in the genomes of producing fungi. Penicillium camemberti plays a major role in the ripening of Brie and Camembert cheeses. The P. camemberti genome contains a cluster of five genes shown in other fungi to be required for synthesis of the important ergot alkaloid intermediate chanoclavine-I aldehyde and two additional genes (easH and easQ) that may control modification of chanoclavine-I aldehyde into other ergot alkaloids. We analyzed samples of Brie and Camembert cheeses, as well as cultures of P. camemberti, and did not detect chanoclavine-I aldehyde or its derivatives. To create a functioning facsimile of the P. camembertieas cluster, we expressed P. camemberti easH and easQ in a chanoclavine-I aldehyde-accumulating easA knockout mutant of Neosartorya fumigata The easH-easQ-engineered N. fumigata strain accumulated a pair of compounds of m/z 269.1288 in positive-mode liquid chromatography-mass spectrometry (LC-MS). The analytes fragmented in a manner typical of the stereoisomeric ergot alkaloids rugulovasine A and B, and the related rugulovasine producer Penicillium biforme accumulated the same isomeric pair of analytes. The P. camemberti eas genes were transcribed in culture, but comparison of the P. camemberti eas cluster with the functional cluster from P. biforme indicated 11 polymorphisms. Whereas other P. camembertieas genes functioned when expressed in N. fumigata, P. camembertieasC did not restore ergot alkaloids when expressed in an easC mutant. The data indicate that P. camemberti formerly had the capacity to produce the ergot alkaloids rugulovasine A and B.IMPORTANCE The presence of ergot alkaloid synthesis genes in the genome of Penicillium camemberti is significant, because the fungus is widely consumed in Brie and Camembert cheeses. Our results show that, although the fungus has several functional genes from the ergot alkaloid pathway, it produces only an early pathway intermediate in culture and does not produce ergot alkaloids in cheese. Penicillium biforme, a close relative of P. camemberti, contains a similar but fully functional set of ergot alkaloid synthesis genes and produces ergot alkaloids chanoclavine-I, chanoclavine-I aldehyde, and rugulovasine A and B. Our reconstruction of the P. camemberti pathway in the model fungus Neosartorya fumigata indicated that P. camemberti formerly had the capacity to produce these same ergot alkaloids. Neither P. camemberti nor P. biforme produced ergot alkaloids in cheese, indicating that nutritionally driven gene regulation prevents these fungi from producing ergot alkaloids in a dairy environment.


Assuntos
Alcaloides de Claviceps/biossíntese , Penicillium/metabolismo , Cromatografia Líquida de Alta Pressão , Ergolinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Espectrometria de Massas , Penicillium/genética
16.
Mycologia ; 110(3): 453-472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29923795

RESUMO

Epichloë species (Clavicipitaceae, Ascomycota) are endophytic symbionts of many cool-season grasses. Many interactions between Epichloë and their host grasses contribute to plant growth promotion, protection from many pathogens and insect pests, and tolerance to drought stress. Resistance to insect herbivores by endophytes associated with Hordeum species has been previously shown to vary depending on the endophyte-grass-insect combination. We explored the genetic and chemotypic diversity of endophytes present in wild Hordeum species. We analyzed seeds of Hordeum bogdanii, H. brevisubulatum, and H. comosum obtained from the US Department of Agriculture's (USDA) National Plant Germplasm System (NPGS), of which some have been reported as endophyte-infected. Using polymerase chain reaction (PCR) with primers specific to Epichloë species, we were able to identify endophytes in seeds from 17 of the 56 Plant Introduction (PI) lines, of which only 9 lines yielded viable seed. Phylogenetic analyses of housekeeping, alkaloid biosynthesis, and mating type genes suggest that the endophytes of the infected PI lines separate into five taxa: Epichloë bromicola, Epichloë tembladerae, and three unnamed interspecific hybrid species. One PI line contained an endophyte that is considered a new taxonomic group, Epichloë sp. HboTG-3 (H. bogdanii Taxonomic Group 3). Phylogenetic analyses of the interspecific hybrid endophytes from H. bogdanii and H. brevisubulatum indicate that these taxa all have an E. bromicola allele but the second allele varies. We verified in planta alkaloid production from the five genotypes yielding viable seed. Morphological characteristics of the isolates from the viable Hordeum species were analyzed for their features in culture and in planta. In the latter, we observed epiphyllous growth and in some cases sporulation on leaves of infected plants.


Assuntos
Endófitos/genética , Epichloe/classificação , Epichloe/genética , Variação Genética , Hordeum/microbiologia , Filogenia , Sementes/microbiologia , Alcaloides/análise , Alelos , Endófitos/classificação , Epichloe/isolamento & purificação , Hordeum/química , Hordeum/genética , Banco de Sementes , Simbiose
17.
J Agric Food Chem ; 65(49): 10703-10710, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29172518

RESUMO

Biosynthesis of the dihydrogenated forms of ergot alkaloids is of interest because many of the ergot alkaloids used as pharmaceuticals may be derived from dihydrolysergic acid (DHLA) or its precursor dihydrolysergol. The maize (Zea mays) ergot pathogen Claviceps gigantea has been reported to produce dihydrolysergol, a hydroxylated derivative of the common ergot alkaloid festuclavine. We hypothesized expression of C. gigantea cloA in a festuclavine-accumulating mutant of the fungus Neosartorya fumigata would yield dihydrolysergol because the P450 monooxygenase CloA from other fungi performs similar oxidation reactions. We engineered such a strain, and high performance liquid chromatography and liquid chromatography-mass spectrometry analyses demonstrated the modified strain produced DHLA, the fully oxidized product of dihydrolysergol. Accumulation of high concentrations of DHLA in field-collected C. gigantea sclerotia and discovery of a mutation in the gene lpsA, downstream from DHLA formation, supported our finding that DHLA rather than dihydrolysergol is the end product of the C. gigantea pathway.


Assuntos
Claviceps/metabolismo , Alcaloides de Claviceps/biossíntese , Zea mays/microbiologia , Cromatografia Líquida de Alta Pressão/métodos , Expressão Gênica , Ácido Lisérgico/análogos & derivados , Ácido Lisérgico/química , Espectrometria de Massas/métodos , Oxigenases de Função Mista/metabolismo , Mutação , Metabolismo Secundário , Transformação Genética
18.
Sci Rep ; 7(1): 8930, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827626

RESUMO

Neosartorya fumigata (Aspergillus fumigatus) is the most common cause of invasive aspergillosis, a frequently fatal lung disease primarily affecting immunocompromised individuals. This opportunistic fungal pathogen produces several classes of specialised metabolites including products of a branch of the ergot alkaloid pathway called fumigaclavines. The biosynthesis of the N. fumigata ergot alkaloids and their relation to those produced by alternate pathway branches in fungi from the plant-inhabiting Clavicipitaceae have been well-characterised, but the potential role of these alkaloids in animal pathogenesis has not been studied extensively. We investigated the contribution of ergot alkaloids to virulence of N. fumigata by measuring mortality in the model insect Galleria mellonella. Larvae were injected with conidia (asexual spores) of two different wild-type strains of N. fumigata and three different ergot alkaloid mutants derived by previous gene knockouts and differing in ergot alkaloid profiles. Elimination of all ergot alkaloids significantly reduced virulence of N. fumigata in G. mellonella (P < 0.0001). Mutants accumulating intermediates but not the pathway end product fumigaclavine C also were less virulent than the wild type (P < 0.0003). The data indicate that ergot alkaloids contribute to virulence of N. fumigata in this insect model and that fumigaclavine C is important for full virulence.


Assuntos
Aspergilose/microbiologia , Aspergillus/efeitos dos fármacos , Aspergillus/fisiologia , Alcaloides de Claviceps/metabolismo , Insetos/microbiologia , Animais , Modelos Animais de Doenças , Alcaloides de Claviceps/química , Técnicas de Inativação de Genes , Larva , Estrutura Molecular , Mutação , Neosartorya/fisiologia , Virulência
19.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28476772

RESUMO

Ergot alkaloids are specialized fungal metabolites that are important as the bases of several pharmaceuticals. Many ergot alkaloids are derivatives of lysergic acid (LA) and have vasoconstrictive activity, whereas several dihydrolysergic acid (DHLA) derivatives are vasorelaxant. The pathway to LA is established, with the P450 monooxygenase CloA playing a key role in oxidizing its substrate agroclavine to LA. We analyzed the activities of products of cloA alleles from different fungi relative to DHLA biosynthesis by expressing them in a mutant of the fungus Neosartorya fumigata that accumulates festuclavine, the precursor to DHLA. Transformants expressing CloA from Epichloë typhina × Epichloë festucae, which oxidizes agroclavine to LA, failed to oxidize festuclavine to DHLA. In substrate feeding experiments, these same transformants oxidized exogenously supplied agroclavine to LA, indicating that a functional CloA was produced. A genomic clone of cloA from Claviceps africana, a sorghum ergot fungus that produces a DHLA derivative, was cloned and expressed in the festuclavine-accumulating mutant of N. fumigata, but several introns in this genomic clone were not processed properly. Expression of a synthetic intron-free version of C. africanacloA resulted in the accumulation of DHLA as assessed by fluorescence high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In substrate feeding experiments, the C. africana CloA also accepted agroclavine as the substrate, oxidizing it to LA. The data indicate that a specialized allele of cloA is required for DHLA biosynthesis and that the pharmaceutically important compound DHLA can be produced in engineered N. fumigataIMPORTANCE Ergot alkaloids are fungal metabolites that have impacted humankind historically as poisons and more recently as pharmaceuticals used to treat dementia, migraines, and other disorders. Much is known about the biosynthesis of ergot alkaloids that are derived from lysergic acid (LA), but important questions remain about a parallel pathway to ergot alkaloids derived from dihydrolysergic acid (DHLA). DHLA-derived alkaloids have minor structural differences compared to LA-derived alkaloids but can have very different activities. To understand how DHLA is made, we analyzed activities of a key enzyme in the DHLA pathway and found that it differed from its counterpart in the LA pathway. Our data indicate a critical difference between the two pathways and provide a strategy for producing DHLA by modifying a model fungus. The ability to produce DHLA in a model fungus may facilitate synthesis of DHLA-derived pharmaceuticals.


Assuntos
Alcaloides de Claviceps/biossíntese , Proteínas Fúngicas/genética , Fungos/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/genética , Ácido Lisérgico/metabolismo
20.
Phytopathology ; 107(5): 504-518, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28168931

RESUMO

Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.


Assuntos
Claviceps/genética , Alcaloides de Claviceps/genética , Evolução Molecular , Hypocreales/genética , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Vias Biossintéticas , Claviceps/química , Claviceps/metabolismo , Endófitos , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Genômica , Hypocreales/química , Hypocreales/metabolismo , Família Multigênica , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/metabolismo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...