Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061509

RESUMO

The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the commonly used bioindicators species used for pollution assessment is Daphnid magna. The Organization for Economic Co-operation and Development (OECD), and other organizations such as the European Chemicals Agency (ECHA) and Environmental Protection Agency (EPA), have set guidelines for acute toxicity testing in daphnids that are severely lacking in terms of information on the characteristics of the exposure vessel when studying the adverse effects of nanoparticles (NPs). Understanding the toxicity mechanisms of nanomaterials is imperative given the scarcity of information on their adverse effects. Furthermore, miniaturization of nanotoxicity assays can reduce the number of daphnids used, as well as the cost and nanomaterial waste, and provide results even at the individual animal level with enhanced reproducibility of testing. In this study, the impact of the exposure vessel on the observed physiological changes of daphnids was investigated for a silver nano ink. Exposures in eleven commercially available vessels; nine made of plastic and two made of glass were compared for 24 h. The effect of surface to volume ratio of the exposure vessel and the animal number or "crowding" during exposure was investigated in the context of miniaturizing biomarker assays as alternatives to traditional experimental setups in Daphnid magna. Toxicity curves showed differences depending on the vessel used, while a novel feeding rate assay and the activity of key enzymes were assessed as physiology endpoints.

2.
J Hazard Mater ; 458: 132023, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441864

RESUMO

Plastic waste is considered a major threat for terrestrial, marine and freshwater ecosystems. Ingestion of primary or secondary microparticles resulting from plastic degradation can lead to their trophic transfer raising serious health concerns. In this study, the effect of amine and carboxy functionalized polystyrene microparticles on the physiology of daphnids was investigated with a combination of phenotypic and metabolic endpoints. Carboxy functionalized microparticles showed higher toxicity in acute exposures compared to their amine counterparts. Accumulation of both microparticles in animal gut was confirmed by stereo-microscopy as well as fluorescent microscopy which showed no presence of particles in the rest of the animal. Fluorescence based quantification of microparticles extracted from animal lysates validated their concentration-dependent uptake. Additionally, exposure of daphnids to amine and carboxy functionalized microparticles resulted in increased activities of key enzymes related to metabolism and detoxification. Finally, significant metabolic perturbations were discovered following exposure to microplastics. These findings suggest that polystyrene microparticles can hinder organism performance of the freshwater species and highlight the importance of seeking for holistic and physiological endpoints for pollution assessment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Poliestirenos/toxicidade , Ecossistema , Poluentes Químicos da Água/análise , Daphnia
3.
Blood Adv ; 6(21): 5685-5697, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-35390134

RESUMO

The bone marrow (BM) stroma represents a protective niche for acute myeloid leukemia (AML) cells. However, the complex underlying mechanisms remain to be fully elucidated. We found 2 small, intracellular, calcium-sensing molecules, S100A8 and S100A9, among the top genes being upregulated in primary AML blasts upon stromal contact. As members of the S100 protein family, they can modulate such cellular processes as proliferation, migration, and differentiation. Dysregulation of S100 proteins is described as a predictor of poor survival in different human cancers, including increased S100A8 expression in de novo AML. Thus, we wanted to decipher the underlying pathways of stroma-mediated S100A8/A9 induction, as well as its functional consequences. Upregulation of S100A8/A9 after stromal cross talk was validated in AML cell lines, was contact independent and reversible and resulted in accumulation of S100A8/A9high cells. Accordingly, frequency of S100A8/A9high AML blasts was higher in the patients' BM than in peripheral blood. The S100A8/A9high AML cell population displayed enhanced utilization of free fatty acids, features of a more mature myeloid phenotype, and increased resilience toward chemotherapeutics and BCL2 inhibition. We identified stromal cell-derived interleukin-6 (IL-6) as the trigger for a Jak/STAT3 signaling-mediated S100A8/A9 induction. Interfering with fatty acid uptake and the IL-6-Jak/STAT3 pathway antagonized formation of S100A8/A9high cells and therapeutic resistance, which could have therapeutic implications as a strategy to interfere with the AML-niche dynamics.


Assuntos
Interleucina-6 , Leucemia Mieloide Aguda , Humanos , Medula Óssea/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Leucemia Mieloide Aguda/metabolismo , Prognóstico
4.
Cancer Res ; 80(17): 3663-3676, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605996

RESUMO

Acute myeloid leukemia (AML) represents the most common acute leukemia among adults. Despite recent progress in diagnosis and treatment, long-term outcome remains unsatisfactory. The success of allogeneic stem cell transplantation underscores the immunoresponsive nature of AML, creating the basis for further exploiting immunotherapies. However, emerging evidence suggests that AML, similar to other malignant entities, employs a variety of mechanisms to evade immunosurveillance. In light of this, T-cell inhibitory myeloid-derived suppressor cells (MDSC) are gaining interest as key facilitators of immunoescape. Accumulation of CD14+HLA-DRlow monocytic MDSCs has been described in newly diagnosed AML patients, and deciphering the underlying mechanisms could help to improve anti-AML immunity. Here, we report that conventional monocytes readily take-up AML-derived extracellular vesicles (EV) and subsequently undergo MDSC differentiation. They acquired an CD14+HLA-DRlow phenotype, expressed the immunomodulatory indoleamine-2,3-dioxygenase, and upregulated expression of genes characteristic for MDSCs, such as S100A8/9 and cEBPß. The Akt/mTOR pathway played a critical role in the AML-EV-induced phenotypical and functional transition of monocytes. Generated MDSCs displayed a glycolytic switch, which rendered them more susceptible toward glycolytic inhibitors. Furthermore, palmitoylated proteins on the AML-EV surface activated Toll-like receptor 2 as the initiating event of Akt/mTOR-dependent induction of MDSC. Therefore, targeting protein palmitoylation in AML blasts could block MDSC accumulation to improve immune responses. SIGNIFICANCE: These findings indicate that targeting protein palmitoylation in AML could interfere with the leukemogenic potential and block MDSC accumulation to improve immunity.


Assuntos
Vesículas Extracelulares/metabolismo , Leucemia Mieloide Aguda/patologia , Células Supressoras Mieloides/patologia , Transdução de Sinais/fisiologia , Evasão Tumoral/fisiologia , Adulto , Idoso , Diferenciação Celular/fisiologia , Células Cultivadas , Vesículas Extracelulares/imunologia , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Lipoilação , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 2 Toll-Like/metabolismo
5.
Ecotoxicol Environ Saf ; 139: 352-357, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28189099

RESUMO

Phenotypic markers of animal health form an essential component of regulatory toxicology. Immobilisation of neonate water fleas - Daphnia magna - as a surrogate measure of their mortality following exposure to a chemical for 24-48h forms the basis of the internationally utilised OECD acute toxicity test 202. A second important marker of animal physiology and health is feeding rate, which in Daphnia is determined by measuring the algae feeding rate. Given the widespread use of OECD test 202 for acute toxicity as well as the quantification of feeding rate in toxicological studies of daphniids, significant benefits could result from miniaturising this assay. In particular, miniaturisation would use fewer animals, less media and chemicals, less laboratory space and make the tests more compatible with automation, and therefore could result in considerable time savings. Furthermore, miniaturising phenotypic markers to the ultimate level of a single animal per well would facilitate multiple measurements of other phenotypic markers, such as behavioural responses, which could be integrated at the individual level. In this study we used a wide range of exposure vessels to evaluate the impacts of systematically varying total media volume, surface to volume ratio and animal density for the acute toxicity testing of cadmium. We demonstrate that Daphnia acute toxicity tests using single animals within 24- or 48-well plates produce equivalent results as for traditional test configurations, for different chemicals. Considering algae feeding rates by Daphnia, we studied the impacts of varying algae concentration, total volume and animal density. After having demonstrated that multiwell plates can again yield equivalent test results as traditional experimental setups, we used miniaturised test vessels to show the impact of metals on the feeding activity on daphniids for both neonates and adult animals. Overall we confirm the feasibility of a multiwell approach for Daphnia toxicity testing that requires less time and materials than a traditional assay and can provide phenotypic characterisation at a single animal level.


Assuntos
Daphnia/efeitos dos fármacos , Comportamento Alimentar , Testes de Toxicidade Aguda/métodos , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/toxicidade , Fenótipo
6.
Astrobiology ; 16(2): 126-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26881470

RESUMO

This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2 and their quantification by an O2 electrode based on the stoichiometry of the involved reactions. The intermediate product O2˙⁻ from the hydrolysis of metal superoxides is converted by cytochrome c to O2 and by superoxide dismutase (SOD) to ½ mol O2 and ½ mol H2O2, which is then converted by catalase (CAT) to ½ mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to ½ mol O2 by CAT. The assay method was validated in a sealed sample chamber by using a liquid-phase Clark-type O2 electrode with known concentrations of O2˙⁻ and H2O2, and commercial metal superoxide and peroxide mixed with Mars analog Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, when using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(-3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by γ radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, which demonstrates the suitability of these enzymes for planetary missions, for example, on Mars or Europa.


Assuntos
Ensaios Enzimáticos/métodos , Marte , Oxigênio/análise , Peróxidos/análise , Superóxidos/análise , Catalase/metabolismo , Simulação por Computador , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Raios gama , Concentração de Íons de Hidrogênio , Hidrólise , Solo , Superóxido Dismutase/metabolismo
7.
Nat Commun ; 6: 7100, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25960012

RESUMO

The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars.


Assuntos
Processos Fotoquímicos , Espécies Reativas de Oxigênio/química , Solo/química , Clima Desértico , Metais/química , Oxirredução , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA