Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299306

RESUMO

Chitosan is one of the most commonly employed natural polymers for biomedical applications. However, in order to obtain stable chitosan biomaterials with appropriate strength properties, it is necessary to subject it to crosslinking or stabilization. Composites based on chitosan and bioglass were prepared using the lyophilization method. In the experimental design, six different methods were used to obtain stable, porous chitosan/bioglass biocomposite materials. This study compared the crosslinking/stabilization of chitosan/bioglass composites with ethanol, thermal dehydration, sodium tripolyphosphate, vanillin, genipin, and sodium ß-glycerophosphate. The physicochemical, mechanical, and biological properties of the obtained materials were compared. The results showed that all the selected crosslinking methods allow the production of stable, non-cytotoxic porous composites of chitosan/bioglass. The composite with genipin stood out with the best of the compared properties, taking into account biological and mechanical characteristics. The composite stabilized with ethanol is distinct in terms of its thermal properties and swelling stability, and it also promotes cell proliferation. Regarding the specific surface area, the highest value exposes the composite stabilized by the thermal dehydration method.

2.
Front Microbiol ; 14: 1111947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922971

RESUMO

Chimeric virus-like particles (cVLPs) show great potential in improving public health as they are safe and effective vaccine candidates. The capsid protein of caliciviruses has been described previously as a self-assembling, highly immunogenic delivery platform. The ability to significantly induce cellular and humoral immunity can be used to boost the immune response to low immunogenic foreign antigens displayed on the surface of VLPs. Capsid proteins of caliciviruses despite sequence differences share similar architecture with structural loops that can be genetically modified to present foreign epitopes on the surface of cVLPs. Here, based on the VP1 protein of norovirus (NoV), we investigated the impact of the localization of the epitope in different structural loops of the P domain on the immunogenicity of the presented epitope. In this study, three distinct loops of NoV VP1 protein were genetically modified to present a multivalent influenza virus epitope consisting of a tandem repeat of M2/NP epitopes. cVLPs presenting influenza virus-conserved epitopes in different localizations were produced in the insect cells and used to immunize BALB/c mice. Specific reaction to influenza epitopes was compared in sera from vaccinated mice to determine whether the localization of the foreign epitope has an impact on the immunogenicity.

3.
Sci Rep ; 13(1): 1512, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707671

RESUMO

Accurate and fast detection of viruses is crucial for controlling outbreaks of many diseases; therefore, to date, numerous sensing systems for their detection have been studied. On top of the performance of these sensing systems, the availability of biorecognition elements specific to especially the new etiological agents is an additional fundamental challenge. Therefore, besides high sensitivity and selectivity, such advantages as the size of the sensor and possibly low volume of analyzed samples are also important, especially at the stage of evaluating the receptor-target interactions in the case of new etiological agents when typically, only tiny amounts of the receptor are available for testing. This work introduces a real-time, highly miniaturized sensing solution based on microcavity in-line Mach-Zehnder interferometer (µIMZI) induced in optical fiber for SARS-CoV-2 virus-like particles detection. The assay is designed to detect conserved regions of the SARS-CoV-2 viral particles in a sample with a volume as small as hundreds of picoliters, reaching the detection limit at the single ng per mL level.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Fibras Ópticas , SARS-CoV-2 , Interferometria , COVID-19/diagnóstico
4.
Acta Bioeng Biomech ; 25(4): 69-80, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072467

RESUMO

Purpose: The aim of the presented work was to characterize the new obtained bioglasses and assess their biological performance in vitro. Bioglasses were produced using the sol-gel method in the SiO2-P2O5-CaO system, for the purpose as composite ingredients. Their chemical composition was enriched with ZnO to introduce antibacterial properties and SrO with osteoinductive effect. The properties of bioglasses were compared and the effect of chemical composition and particle size on their biological properties was assessed. Methods: The bioglasses were evaluated via TG-DTA, FTIR, SEM-EDS analyses before and after incubation in SBF solution. LDH and WST-1 tests were used to determine the level of cytotoxicity of the tested bioglasses on hFOB1.19 osteoblasts. Results: The results show that the developed bioglasses release Ca2+, are bioactive in SBF solution, not cytotoxic and show antibacterial activity in contact with Pseudomonas aeruginosa and Staphylococcus aureus strains. Bioglasses enriched with ZnO show the highest bactericidal activity. All tested bioglasses enhanced hFOB 1.19 cells proliferation. Particle size has a lower effect on biological performance of the bioglasses than their chemical composition. Conclusions: The conducted research showed that bioglass modification with SrO and ZnO can be considered particularly for the development of biomaterials supporting bone regeneration and the treatment of infected bone defects.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Vidro , Teste de Materiais , Osteoblastos , Estrôncio , Zinco , Antibacterianos/farmacologia , Antibacterianos/síntese química , Osteoblastos/efeitos dos fármacos , Estrôncio/farmacologia , Estrôncio/química , Humanos , Materiais Biocompatíveis/farmacologia , Vidro/química , Linhagem Celular , Zinco/farmacologia , Cerâmica/química , Cerâmica/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365516

RESUMO

BACKGROUND: Cytotoxicity testing is a primary method to establish the safety of biomaterials, e.g., biocomposites. Biomaterials involve a wide range of medical materials, which are usually solid materials and are used in bone regeneration, cardiology, or dermatology. Current advancements in science and technology provide several standard cytotoxicity testing methods that are sufficiently sensitive to detect various levels of cellular toxicity, i.e., from low to high. The aim was to compare the direct and indirect methodology described in the ISO guidelines UNE-EN ISO 10993-5:2009 Part 5. METHODS: Cell proliferation was measured using WST-1 assay, and cytotoxicity was measured using LDH test kit. RESULTS: The results indicate that the molecular surface of biomaterials have impact on the cytotoxicity and proliferation profile. Based on these results, we confirm that the indirect method does not provide a clear picture of the cell condition after the exposure to the surface, and moreover, cannot provide complete results about the effects of the material. CONCLUSIONS: Comparison of both methods shows that it is pivotal to investigate biomaterials at the very early stages using both indirect and direct methods to access the influence of the released toxins and surface of the material on the cell condition.

6.
Viruses ; 14(4)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35458460

RESUMO

(1) Background: Avian influenza viruses (AIVs) promptly evade preexisting immunity by constantly altering the immunodominant neutralizing antibody epitopes (antigenic drift) or by procuring new envelope serotypes (antigenic shift). As a consequence, the majority of antibodies elicited by infection or vaccination protect only against closely related strains. The immunodominance of the globular head of the main glycoprotein has been shown to mask the immunogenicity of the conserved regions located within the hemagglutinin (HA) protein. It has been shown that the broadly neutralizing universal antibodies recognize the HA2 domain in headless hemagglutinin (HA-stalk). Therefore, the HA-stalk is a highly conserved antigen, which makes it a good candidate to be used in universal vaccine development against AIVs. (2) Methods: Sf9 insect cells were used to produce triple H5N1/NA-HA-M1 influenza virus-like particles (VLPs) via co-expression of neuraminidase, hemagglutinin and matrix proteins from a tricistronic expression cassette. Purified influenza VLPs were used to immunize broiler hens. An in-depth characterization of the immune response was performed with an emphasis on the pool of elicited universal antibodies. (3) Results: Our findings suggest, that after vaccination with triple H5N1/NA-HA-M1 VLPs, hens generate a pool of broad-spectrum universal anti-HA-stalk antibodies. Furthermore, these universal antibodies are able to recognize the mammalian-derived HA-stalk recombinant proteins from homologous H5N1 and heterologous H7N9 AIVs as well as from the heterosubtypic human H1N1 influenza strain. (4) Conclusions: Our findings may suggest that highly pathogenic avian influenza H5 HA protein contain functional epitopes that are attractive targets for the generation of broad-spectrum antibodies against AIVs in their native hosts.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Galinhas , Epitopos , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Imunidade , Influenza Aviária/prevenção & controle , Influenza Humana/prevenção & controle , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/veterinária
7.
Biosens Bioelectron ; 209: 114222, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430407

RESUMO

The 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel immunosensors targeting conserved protein sequences of the N protein of SARS-CoV-2 based on lab-produced and purified anti-SARS-CoV-2 nucleocapsid antibodies that are densely grafted onto various surfaces (diamond/gold/glassy carbon). Titration of antibodies shows very strong reactions up to 1:72 900 dilution. Next, we showed the mechanism of interactions of our immunoassay with nucleocapsid N protein revealing molecular recognition by impedimetric measurements supported by hybrid modeling results with both density functional theory and molecular dynamics methods. Biosensors allowed for a fast (in less than 10 min) detection of SARS-CoV-2 virus with a limit of detection from 0.227 ng/ml through 0.334 ng/ml to 0.362 ng/ml for glassy carbon, boron-doped diamond, and gold surfaces, respectively. For all tested surfaces, we obtained a wide linear range of concentrations from 4.4 ng/ml to 4.4 pg/ml. Furthermore, our sensor leads to a highly specific response to SARS-CoV-2 clinical samples versus other upper respiratory tract viruses such as influenza, respiratory syncytial virus, or Epstein-Barr virus. All clinical samples were tested simultaneously on biosensors and real-time polymerase chain reactions.


Assuntos
Técnicas Biossensoriais , COVID-19 , Infecções por Vírus Epstein-Barr , Anticorpos Antivirais , Técnicas Biossensoriais/métodos , Boro , COVID-19/diagnóstico , Carbono , Diamante , Ouro , Herpesvirus Humano 4 , Humanos , Imunoensaio/métodos , Nucleocapsídeo , Proteínas do Nucleocapsídeo , SARS-CoV-2
8.
J Nanobiotechnology ; 20(1): 160, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35351156

RESUMO

BACKGROUND: Immunotherapy is emerging as a powerful treatment approach for several types of cancers. Modulating the immune system to specifically target cancer cells while sparing healthy cells, is a very promising approach for safer therapies and increased survival of cancer patients. Tumour-associated antigens are favorable targets for cancer immunotherapy, as they are exclusively expressed by the cancer cells, minimizing the risk of an autoimmune reaction. The ability to initiate the activation of the immune system can be achieved by virus-like particles (VLPs) which are safe and potent delivery tools. VLP-based vaccines have evolved dramatically over the last few decades and showed great potential in preventing infectious diseases. Immunogenic potency of engineered VLPs as a platform for the development of effective therapeutic cancer vaccines has been studied extensively. This study involves recombinant VLPs presenting multiple copies of tumour-specific mucin 1 (MUC1) epitope as a potentially powerful tool for future immunotherapy. RESULTS: In this report VLPs based on the structural protein of Norovirus (NoV VP1) were genetically modified to present multiple copies of tumour-specific MUC1 epitope on their surface. Chimeric MUC1 particles were produced in the eukaryotic Leishmania tarentolae expression system and used in combination with squalene oil-in-water emulsion MF59 adjuvant to immunize BALB/c mice. Sera from vaccinated mice demonstrated high titers of IgG and IgM antibodies which were specifically recognizing MUC1 antigen. CONCLUSIONS: The obtained results show that immunization with recombinant chimeric NoV VP1- MUC1 VLPs result in high titers of MUC1 specific IgG antibodies and show great therapeutic potential as a platform to present tumour-associated antigens.


Assuntos
Neoplasias , Esqualeno , Animais , Epitopos , Humanos , Imunização , Imunoglobulina G , Camundongos , Mucina-1 , Neoplasias/terapia , Água
9.
Toxics ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051062

RESUMO

Assessing the toxicity of new biomaterials dedicated to bone regeneration can be difficult. Many reports focus only on a single toxicity parameter, which may be insufficient for a detailed evaluation of the new material. Moreover, published data frequently do not include control cells exposed to the environment without composite or its extract. Here we present the results of two assays used in the toxicological assessment of materials' extracts (the integrity of the cellular membrane and the mitochondrial activity/proliferation), and the influence of different types of controls used on the obtained results. Results obtained in the cellular membrane integrity assay showed a lack of toxic effects of all tested extracts, and no statistical differences between them were present. Control cells, cells incubated with chitosan extract or chitosan-bioglass extract were used as a reference in proliferation calculations to highlight the impact of controls used on the result of the experiment. The use of different baseline controls caused variability between obtained proliferation results, and influenced the outcome of statistical analysis. Our findings confirm the thesis that the type of control used in an experiment can change the final results, and it may affect the toxicological assessment of biomaterial.

10.
Microb Cell Fact ; 20(1): 186, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560881

RESUMO

BACKGROUND: Noroviruses are a major cause of epidemic and sporadic acute non-bacterial gastroenteritis worldwide. Unfortunately, the development of an effective norovirus vaccine has proven difficult and no prophylactic vaccine is currently available. Further research on norovirus vaccine development should be considered an absolute priority and novel vaccine candidates are needed. One of the recent approaches in safe vaccine development is the use of virus-like particles (VLPs). VLP-based vaccines show great immunogenic potential as they mimic the morphology and structure of viral particles without the presence of the virus genome. RESULTS: This study is the first report showing successful production of norovirus VLPs in the protozoan Leishmania tarentolae (L. tarentolae) expression system. Protozoan derived vaccine candidate is highly immunogenic and able to not only induce a strong immune response (antibody titer reached 104) but also stimulate the production of neutralizing antibodies confirmed by receptor blocking assay. Antibody titers able to reduce VLP binding to the receptor by > 50% (BT50) were observed for 1:5-1:320 serum dilutions. CONCLUSIONS: Norovirus VLPs produced in L. tarentolae could be relevant for the development of the norovirus vaccine.


Assuntos
Anticorpos Neutralizantes/sangue , Leishmania/genética , Leishmania/virologia , Norovirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Imunização , Imunoglobulina G/sangue , Leishmania/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Desenvolvimento de Vacinas , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
Sensors (Basel) ; 20(3)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028629

RESUMO

Since the norovirus is the main cause of acute gastroenteritis all over the world, its fast detection is crucial in medical diagnostics. In this work, a rapid, sensitive, and selective optical fiber biosensor for the detection of norovirus virus-like particles (VLPs) is reported. The sensor is based on highly sensitive long-period fiber gratings (LPFGs) coated with antibodies against the main coat protein of the norovirus. Several modification methods were verified to obtain reliable immobilization of protein receptors on the LPFG surface. We were able to detect 1 ng/mL norovirus VLPs in a 40-min assay in a label-free manner. Thanks to the application of an optical fiber as the sensor, there is a possibility to increase the user's safety by separating the measurement point from the signal processing setup. Moreover, our sensor is small and light, and the proposed assay is straightforward. The designed LPFG-based biosensor could be applied in both fast norovirus detection and in vaccine testing.


Assuntos
Anticorpos/isolamento & purificação , Técnicas Biossensoriais , Gastroenterite/genética , Norovirus/isolamento & purificação , Gastroenterite/diagnóstico , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Norovirus/patogenicidade , Proteínas Virais/imunologia , Proteínas Virais/isolamento & purificação
12.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491165

RESUMO

Various types of intercellular connections that are essential for communication between cells are often utilized by pathogens. Recently, a new type of cellular connection, consisting of long, thin, actin-rich membrane extensions named tunneling nanotubes (TNTs), has been shown to play an important role in cell-to-cell spread of HIV and influenza virus. In the present report, we show that TNTs are frequently formed by cells infected by an alphaherpesvirus, bovine herpesvirus 1 (BoHV-1). Viral proteins, such as envelope glycoprotein E (gE), capsid protein VP26, and tegument protein Us3, as well as cellular organelles (mitochondria) were detected by immunofluorescence and live-cell imaging of nanotubes formed by bovine primary fibroblasts and oropharynx cells (KOP cells). Time-lapse confocal studies of live cells infected with fluorescently labeled viruses showed that viral particles were transmitted via TNTs. This transfer also occurred in the presence of neutralizing antibodies, which prevented free entry of BoHV-1. We conclude that TNT formation contributes to successful cell-to-cell spread of BoHV-1 and demonstrate for the first time the participation of membrane nanotubes in intercellular transfer of a herpesvirus in live cells.IMPORTANCE Efficient transmission of viral particles between cells is an important factor in successful infection by herpesviruses. Herpesviruses can spread by the free-entry mode or direct cell-to-cell transfer via cell junctions and long extensions of neuronal cells. In this report, we show for the first time that an alphaherpesvirus can also spread between various types of cells using tunneling nanotubes, intercellular connections that are utilized by HIV and other viruses. Live-cell monitoring revealed that viral transmission occurs between the cells of the same type as well as between epithelial cells and fibroblasts. This newly discovered route of herpesviruses spread may contribute to efficient transmission despite the presence of host immune responses, especially after reactivation from latency that developed after primary infection. Long-range communication provided by TNTs may facilitate the spread of herpesviruses between many tissues and organs of an infected organism.


Assuntos
Extensões da Superfície Celular/virologia , Infecções por Herpesviridae/transmissão , Herpesvirus Bovino 1/fisiologia , Proteínas Virais/metabolismo , Animais , Proteínas do Capsídeo/metabolismo , Bovinos , Comunicação Celular/fisiologia , Linhagem Celular , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Infecções por Herpesviridae/virologia , Junções Intercelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA