Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 3(3): 919-928, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006763

RESUMO

[FeII(NCCH3)(NTB)](OTf)2 (NTB = tris(2-benzimidazoylmethyl)amine, OTf = trifluoromethanesulfonate) was reacted with difluoro(phenyl)-λ3-iodane (PhIF2) in the presence of a variety of saturated hydrocarbons, resulting in the oxidative fluorination of the hydrocarbons in moderate-to-good yields. Kinetic and product analysis point towards a hydrogen atom transfer oxidation prior to fluorine radical rebound to form the fluorinated product. The combined evidence supports the formation of a formally FeIV(F)2 oxidant that performs hydrogen atom transfer followed by the formation of a dimeric µ-F-(FeIII)2 product that is a plausible fluorine atom transfer rebound reagent. This approach mimics the heme paradigm for hydrocarbon hydroxylation, opening up avenues for oxidative hydrocarbon halogenation.

2.
Angew Chem Int Ed Engl ; 60(50): 26281-26286, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34582619

RESUMO

We anticipate high-valent metal-fluoride species will be highly effective hydrogen atom transfer (HAT) oxidants because of the magnitude of the H-F bond (in the product) that drives HAT oxidation. We prepared a dimeric FeIII (F)-F-FeIII (F) complex (1) by reacting [FeII (NCCH3 )2 (TPA)](ClO4 )2 (TPA=tris(2-pyridylmethyl)amine) with difluoro(phenyl)-λ3 -iodane (difluoroiodobenzene). 1 was a sluggish oxidant, however, it was readily activated by reaction with Lewis or Brønsted acids to yield a monomeric [FeIII (TPA)(F)(X)]+ complex (2) where X=F/OTf. 1 and 2 were characterized using NMR, EPR, UV/Vis, and FT-IR spectroscopies and mass spectrometry. 2 was a remarkably reactive FeIII reagent for oxidative C-H activation, demonstrating reaction rates for hydrocarbon HAT comparable to the most reactive FeIII and FeIV oxidants.

3.
J Am Chem Soc ; 141(34): 13306-13310, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31411876

RESUMO

A facile synthetic route to NiPt3@NiS heteronanostructures is reported, starting from a subsulfido bridged heterobimetallic nickel-platinum molecular precursor. Notably, the NiPt3@NiS on nickel foam displayed merely an overpotential of 12 mV at -10 mA cm-2, which is substantially lower than that of Pt or NiS, synthesized through a similar approach and represents the most active hydrogen evolution reaction (HER) electrocatalysts yet reported in alkaline solutions. NiPt3@NiS electrodes demonstrated an unceasing HER stability over 8 days, which is well over those reported for Pt-based catalysts signifying a capability of scaled hydrogen production.

4.
Chem Sci ; 9(45): 8590-8597, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568784

RESUMO

In large-scale, hydrogen production from water-splitting represents the most promising solution for a clean, recyclable, and low-cost energy source. The realization of viable technological solutions requires suitable efficient electrochemical catalysts with low overpotentials and long-term stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) based on cheap and nontoxic materials. Herein, we present a unique molecular approach to monodispersed, ultra-small, and superiorly active iron phosphide (FeP) electrocatalysts for bifunctional OER, HER, and overall water-splitting. They result from transformation of a molecular iron phosphide precursor, containing a [Fe2P3] core with mixed-valence FeIIFeIII sites bridged by an asymmetric cyclo-P(2+1) 3- ligand. The as-synthesized FeP nanoparticles act as long-lasting electrocatalysts for OER and HER with low overpotential and high current densities that render them one of the best-performing electrocatalysts hitherto known. The fabricated alkaline electrolyzer delivered low cell voltage with durability over weeks, representing an attractive catalyst for large-scale water-splitting technologies.

5.
Angew Chem Int Ed Engl ; 57(46): 15237-15242, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30248219

RESUMO

The synthesis of structurally ordered non-noble intermetallic cobalt stannide (CoSn2 ) nanocrystals and their utilization for high-performance electrocatalytic overall water-splitting is presented. The structurally and electronically beneficial properties of the tetragonal CoSn2 exhibit a considerably low overpotential for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) on fluorine-doped tin oxide (FTO) and Ni foam (NF). Loss of Sn from the crystal lattices and oxidation of Co under strongly alkaline conditions furnishes highly disordered amorphous active CoOx (H), the catalytically active structure for OER. The Co0 atoms in the CoSn2 act as active sites for HER and the presence of Sn provides efficient electrical conductivity. This intermetallic phase is a novel type of cost-effective and competitive bifunctional electrocatalysts and predestinated for overall water-splitting devices: A two-electrode electrolyzer with CoSn2 on NF delivers a cell voltage of merely 1.55 V at 10 mA cm-2 maintaining long-term stability.

6.
Angew Chem Int Ed Engl ; 57(45): 14883-14887, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30204293

RESUMO

The formation and detailed spectroscopic characterization of the first biuret-containing monoanionic superoxido-NiII intermediate [LNiO2 ]- as the Li salt [2; L=MeN[C(=O)NAr)2 ; Ar=2,6-iPr2 C6 H3 )] is reported. It results from oxidation of the corresponding [Li(thf)3 ]2 [LNiII Br2 ] complex M with excess H2 O2 in the presence of Et3 N. The [LNiO2 ]- core of 2 shows an unprecedented nucleophilic reactivity in the oxidative deformylation of aldehydes, in stark contrast to the electrophilic character of the previously reported neutral Nacnac-containing superoxido-NiII complex 1, [L'NiO2 ] (L'=CH(CMeNAr)2 ). According to density-functional theory (DFT) calculations, the remarkably different behaviour of 1 versus 2 can be attributed to their different charges and a two-state reactivity, in which a doublet ground state and a nearby spin-polarized doublet excited-state both contribute in 1 but not in 2. The unexpected nucleophilicity of the superoxido-NiII core of 2 suggests that such a reactivity may also play a role in catalytic cycles of Ni-containing oxygenases and oxidases.


Assuntos
Complexos de Coordenação/química , Lítio/química , Níquel/química , Superóxidos/química , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxigênio/química , Oxigenases/química , Teoria Quântica , Sais/química
7.
Angew Chem Int Ed Engl ; 57(35): 11130-11139, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29733547

RESUMO

The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This Minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water-splitting.

8.
Inorg Chem ; 56(18): 10852-10860, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28841016

RESUMO

Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the FeV(O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by FeV(O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O2 by Fe-bTAML, leading to formation of the FeV(O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.

9.
Angew Chem Int Ed Engl ; 56(35): 10506-10510, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28678439

RESUMO

A highly active FeSe2 electrocatalyst for durable overall water splitting was prepared from a molecular 2Fe-2Se precursor. The as-synthesized FeSe2 was electrophoretically deposited on nickel foam and applied to the oxygen and hydrogen evolution reactions (OER and HER, respectively) in alkaline media. When used as an oxygen-evolution electrode, a low 245 mV overpotential was achieved at a current density of 10 mA cm-2 , representing outstanding catalytic activity and stability because of Fe(OH)2 /FeOOH active sites formed at the surface of FeSe2 . Remarkably, the system is also favorable for the HER. Moreover, an overall water-splitting setup was fabricated using a two-electrode cell, which displayed a low cell voltage and high stability. In summary, the first iron selenide material is reported that can be used as a bifunctional electrocatalyst for the OER and HER, as well as overall water splitting.

10.
Chem Commun (Camb) ; 51(83): 15257-60, 2015 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-26176025

RESUMO

We report the use of a molecular peroxidase mimic biuret-Fe-TAML for chemoselective labeling of proteins and the subsequent visual detection (<0.1 pmoles) of the conjugate in a polyacrylamide gel by catalytic signal amplification. Use of this probe in activity based protein profiling (ABPP) of serine proteases is also demonstrated.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Compostos de Ferro/química , Proteínas/análise , Animais , Catálise , Bovinos , Géis/química , Géis/metabolismo , Humanos , Compostos de Ferro/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas/metabolismo
11.
Chemistry ; 21(16): 5993, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25740016

RESUMO

Invited for the cover of this issue are Terrence J. Collins and co-workers at Carnegie Mellon University (USA) and the National Chemical Laboratory (India). The image depicts five generations of tetraamido macrocyclic ligand (TAML) activators, which are small molecule, full-functional mimics of oxidizing enzymes that arguably outperform the peroxidase enzymes they mimic. Read the full text of the article at 10.1002/chem.201406061.

12.
Chemistry ; 21(16): 6226-33, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25684430

RESUMO

The catalytic activity of the N-tailed ("biuret") TAML (tetraamido macrocyclic ligand) activators [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 NR}Cl](2-) (3; N atoms in boldface are coordinated to the central iron atom; the same nomenclature is used in for compounds 1 and 2 below), [X, R=H, Me (a); NO2 , Me (b); H, Ph (c)] in the oxidative bleaching of Orange II dye by H2 O2 in aqueous solution is mechanistically compared with the previously investigated activator [Fe{4-XC6 H3 -1,2-(NCOCMe2 NCO)2 CMe2 }OH2 ](-) (1) and the more aggressive analogue [Fe(Me2 C{CON(1,2-C6 H3 -4-X)NCO}2 )OH2 ](-) (2). Catalysis by 3 of the reaction between H2 O2 and Orange II (S) occurs according to the rate law found generally for TAML activators (v=kI kII [Fe(III) ][S][H2 O2 ]/(kI [H2 O2 ]+kII [S]) and the rate constants kI and kII at pH 7 both decrease within the series 3 b>3 a>3 c. The pH dependency of kI and kII was investigated for 3 a. As with all TAML activators studied to-date, bell-shaped profiles were found for both rate constants. For kI , the maximal activity was found at pH 10.7 marking it as having similar reactivity to 1 a. For kII , the broad bell pH profile exhibits a maximum at pH about 10.5. The condition kI ≪kII holds across the entire pH range studied. Activator 3 b exhibits pronounced activity in neutral to slightly basic aqueous solutions making it worthy of consideration on a technical performance basis for water treatment. The rate constants ki for suicidal inactivation of the active forms of complexes 3 a-c were calculated using the general formula ln([S0 ]/[S∞ ])=(kII /ki )[Fe(III) ]; here [Fe(III) ], [S0 ], and [S∞ ] are the total catalyst concentration and substrate concentration at time zero and infinity, respectively. The synthesis and X-ray characterization of 3 c are also described.


Assuntos
Amidas/química , Compostos Azo/química , Benzenossulfonatos/química , Peróxido de Hidrogênio/química , Compostos Macrocíclicos/química , Catálise , Cristalografia por Raios X , Cinética , Ligantes , Modelos Moleculares , Oxirredução
13.
Inorg Chem ; 54(4): 1535-42, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25594114

RESUMO

The presence of an Fe(V)(O) species has been postulated as the active intermediate for the oxidation of both C-H and C═C bonds in the Rieske dioxygenase family of enzymes. Understanding the reactivity of these high valent iron-oxo intermediates, especially in an aqueous medium, would provide a better understanding of these enzymatic reaction mechanisms. The formation of an Fe(V)(O) complex at room temperature in an aqueous CH3CN mixture that contains up to 90% water using NaOCl as the oxidant is reported here. The stability of Fe(V)(O) decreases with increasing water concentration. We show that the reactivity of Fe(V)(O) toward the oxidation of C-H bonds, such as those in toluene, can be tuned by varying the amount of water in the H2O/CH3CN mixture. Rate acceleration of up to 60 times is observed for the oxidation of toluene upon increasing the water concentration. The role of water in accelerating the rate of the reaction has been studied using kinetic measurements, isotope labeling experiments, and density functional theory (DFT) calculations. A kinetic isotope effect of ∼13 was observed for the oxidation of toluene and d8-toluene showing that C-H abstraction was involved in the rate-determining step. Activation parameters determined for toluene oxidation in H2O/CH3CN mixtures on the basis of Eyring plots for the rate constants show a gain in enthalpy with a concomitant loss in entropy. This points to the formation of a more-ordered transition state involving water molecules. To further understand the role of water, we performed a careful DFT study, concentrating mostly on the rate-determining hydrogen abstraction step. The DFT-optimized structure of the starting Fe(V)(O) and the transition state indicates that the rate enhancement is due to the transition state's favored stabilization over the reactant due to enhanced hydrogen bonding with water.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Temperatura , Água/química , Acetonitrilas/química , Ligação de Hidrogênio , Cinética , Oxirredução , Teoria Quântica , Tolueno/química
14.
ACS Appl Mater Interfaces ; 6(16): 13866-73, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25089579

RESUMO

Peroxidase, such as horseradish peroxidase (HRP), conjugated to antibodies are routinely used for the detection of proteins via an ELISA type assay in which a critical step is the catalytic signal amplification by the enzyme to generate a detectable signal. Synthesis of functional mimics of peroxidase enzyme that display catalytic activity which far exceeds the native enzyme is extremely important for the precise and accurate determination of very low quantities of proteins (fM and lower) that is necessary for early clinical diagnosis. Despite great advancements, analyzing proteins of very low abundance colorimetrically, a method that is most sought after since it requires no equipment for the analysis, still faces great challenges. Most reported HRP mimics that show catalytic activity greater than native enzyme (∼10-fold) are based on metal/metal-oxide nanoparticles such as Fe3O4. In this paper, we describe a second generation hybrid material developed by us in which approximately 25,000 alkyne tagged biuret modified Fe-tetraamido macrocyclic ligand (Fe-TAML), a very powerful small molecule synthetic HRP mimic, was covalently attached inside a 40 nm mesoporous silica nanoparticle (MSN). Biuret-modified Fe-TAMLs represent one of the best small molecule functional mimics of the enzyme HRP with reaction rates in water close to the native enzyme and operational stability (pH, ionic strength) far exceeding the natural enzyme. The catalytic activity of this hybrid material is around 1000-fold higher than that of natural HRP and 100-fold higher than that of most metal/metal oxide nanoparticle based HRP mimics reported to date. We also show that using antibody conjugates of this hybrid material it is possible to detect and, most importantly, quantify femtomolar quantities of proteins colorimetrically in an ELISA type assay. This represents at least 10-fold higher sensitivity than other colorimetric protein assays that have been reported using metal/metal oxide nanoparticles as HRP mimic. Using a human IgG expressing cell line, we were able to demonstrate that the protein of interest human IgG could be detected from a mixture of interfering proteins in our assay.


Assuntos
Nanopartículas/química , Peroxidase/análise , Dióxido de Silício/química , Catálise , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Peroxidase do Rábano Silvestre/análise , Peroxidase do Rábano Silvestre/química , Humanos , Peroxidase/química
15.
J Am Chem Soc ; 136(35): 12273-82, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25119524

RESUMO

Water splitting, leading to hydrogen and oxygen in a process that mimics natural photosynthesis, is extremely important for devising a sustainable solar energy conversion system. Development of earth-abundant, transition metal-based catalysts that mimic the oxygen-evolving complex of photosystem II, which is involved in oxidation of water to O2 during natural photosynthesis, represents a major challenge. Further, understanding the exact mechanism, including elucidation of the role of active metal-oxo intermediates during water oxidation (WO), is critical to the development of more efficient catalysts. Herein, we report Fe(III) complexes of biuret-modified tetra-amidomacrocyclic ligands (Fe-TAML; 1a and 1b) that catalyze fast, homogeneous, photochemical WO to give O2, with moderate efficiency (maximum TON = 220, TOF = 0.76 s(-1)). Previous studies on photochemical WO using iron complexes resulted in demetalation of the iron complexes with concomitant formation of iron oxide nanoparticles (NPs) that were responsible for WO. Herein, we show for the first time that a high valent Fe(V)(O) intermediate species is photochemically generated as the active intermediate for the oxidation of water to O2. To the best of our knowledge, this represents the first example of a molecular iron complex catalyzing photochemical WO through a Fe(V)(O) intermediate.

16.
J Am Chem Soc ; 136(27): 9524-7, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24387595

RESUMO

An Fe(V)(O) complex has been synthesized from equimolar solutions of (Et4N)2[Fe(III)(Cl)(biuret-amide)] and mCPBA in CH3CN at room temperature. The Fe(V)(O) complex has been characterized by UV-vis, EPR, Mössbauer, and HRMS and shown to be capable of oxidizing a series of alkanes having C-H bond dissociation energies ranging from 99.3 kcal mol(-1) (cyclohexane) to 84.5 kcal mol(-1) (cumene). Linearity in the Bell-Evans-Polayni graph and the finding of a large kinetic isotope effect suggest that hydrogen abstraction is engaged the rate-determining step.


Assuntos
Compostos de Ferro/síntese química , Oxigênio/química , Temperatura , Compostos de Ferro/química , Estrutura Molecular
17.
Chem Commun (Camb) ; 49(22): 2216-8, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23392230

RESUMO

Catalytic signal amplification was used for the colorimetric detection of CN(-) in aqueous media by using the enzyme catalase in tandem with mesoporous silica nanoparticle based synthetic HRP enzyme mimic Fe-MSNs. Signal amplification up to a maximum of eight fold was observed for the reporter "oxidized TMB" with respect to the added CN(-) ion.


Assuntos
Amidas/química , Biureto/química , Catalase/química , Cianetos/análise , Compostos Férricos/química , Nanopartículas/química , Dióxido de Silício/química , Catalase/metabolismo , Catálise , Colorimetria , Estrutura Molecular , Porosidade , Propriedades de Superfície
18.
Chem Commun (Camb) ; 48(43): 5292-4, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22466999

RESUMO

We report a facile one-pot synthesis of hierarchically porous scaffolds, with independent control over nanoparticle mesoporosity and scaffold macroporosity. Our technique combines the chemistry of mesoporous silica nanoparticles with the control afforded by dynamic templating of surfactant mesophases. These materials are readily functionalizable and allow controllable spatial variation in macroporosity.

19.
Chem Commun (Camb) ; 48(43): 5289-91, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22446974

RESUMO

An [Fe(III)(biuret-amide)] complex has been immobilized onto mesoporous silica nanoparticles via Cu(I) catalyzed azide-alkyne click chemistry. This hybrid material functions as an efficient peroxidase mimic and was successfully used for the quantitative determination of hydrogen peroxide and glucose via a one-pot colorimetric assay.


Assuntos
Materiais Biomiméticos/metabolismo , Biureto/análogos & derivados , Colorimetria , Complexos de Coordenação/química , Compostos Férricos/química , Glucose/análise , Nanopartículas/química , Dióxido de Silício/química , Materiais Biomiméticos/química , Biureto/síntese química , Biureto/química , Química Click , Complexos de Coordenação/metabolismo , Compostos Férricos/síntese química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/análise , Porosidade
20.
Chem Commun (Camb) ; 47(28): 8016-8, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21674085

RESUMO

An Fe(III) complex of a biuret-amide based macrocyclic ligand that exhibits both excellent reactivity for the activation of H(2)O(2) and high stability, especially at low pH and high ionic strength, is reported.


Assuntos
Amidas/química , Materiais Biomiméticos/química , Ferro/química , Compostos Macrocíclicos/química , Compostos Organometálicos/química , Peroxidases/metabolismo , Ligantes , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...