Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Glob Public Health ; 4(5): e0002871, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814949

RESUMO

In West Africa, malaria is one of the leading causes of disease-induced deaths. Existing studies indicate that as urbanization increases, there is corresponding decrease in malaria prevalence. However, in malaria-endemic areas, the prevalence in some rural areas is sometimes lower than in some peri-urban and urban areas. Therefore, the relationship between the degree of urbanization, the impact of living in urban areas, and the prevalence of malaria remains unclear. This study explores this association in Ghana, using epidemiological data at the district level (2015-2018) and data on health, hygiene, and education. We applied a multilevel model and time series decomposition to understand the epidemiological pattern of malaria in Ghana. Then we classified the districts of Ghana into rural, peri-urban, and urban areas using administratively defined urbanization, total built areas, and built intensity. We converted the prevalence time series into cross-sectional data for each district by extracting features from the data. To predict the determinant most impacting according to the degree of urbanization, we used a cluster-specific random forest. We find that prevalence is impacted by seasonality, but the trend of the seasonal signature is not noticeable in urban and peri-urban areas. While urban districts have a slightly lower prevalence, there are still pockets with higher rates within these regions. These areas of high prevalence are linked to proximity to water bodies and waterways, but the rise in these same variables is not associated with the increase of prevalence in peri-urban areas. The increase in nightlight reflectance in rural areas is associated with an increased prevalence. We conclude that urbanization is not the main factor driving the decline in malaria. However, the data indicate that understanding and managing malaria prevalence in urbanization will necessitate a focus on these contextual factors. Finally, we design an interactive tool, 'malDecision' that allows data-supported decision-making.

2.
Proc Natl Acad Sci U S A ; 119(15): e2119890119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377809

RESUMO

Urbanization can challenge sustainable development if it produces unequal outcomes. Infrastructure is an important urbanization dimension, providing services to support diverse urban activities. However, it can lock in unequal outcomes due to its durable nature. This paper studies inequalities in infrastructure distributions to derive insights into the structure and characteristics of unequal outcomes associated with urbanization. We analyzed infrastructure inequalities in two emerging economies in the Global South: India and South Africa. We developed and applied an inequality measure to understand the structure of inequality in infrastructure provisioning (based on census data) and infrastructure availability (based on satellite nighttime lights [NTLs] data). Consistent with differences in economic inequality, results show greater inequalities in South Africa than in India and greater urban inequalities than rural inequalities. Nevertheless, inequalities in urban infrastructure provisioning and infrastructure availability increase from finer to coarser spatial scales. NTL-based inequality measurements additionally show that inequalities are more concentrated at coarse spatial scales in India than in South Africa. Finally, results show that urban inequalities in infrastructure provisioning covary with urbanization levels conceptualized as a multidimensional phenomenon, including demographic, economic, and infrastructural dimensions. Similarly, inequalities in urban infrastructure availability increase monotonically with infrastructure development levels and urban population size. Together, these findings underscore infrastructure inequalities as a feature of urbanization and suggest that understanding urban inequalities requires applying an inequality lens to urbanization.

3.
NPJ Urban Sustain ; 2(1): 26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37521776

RESUMO

Understanding spatial determinants, i.e., social, infrastructural, and environmental features of a place, which shape infectious disease is critically important for public health. We present an exploration of the spatial determinants of reported COVID-19 incidence across India's 641 urban and rural districts, comparing two waves (2020-2021). Three key results emerge using three COVID-19 incidence metrics: cumulative incidence proportion (aggregate risk), cumulative temporal incidence rate, and severity ratio. First, in the same district, characteristics of COVID-19 incidences are similar across waves, with the second wave over four times more severe than the first. Second, after controlling for state-level effects, urbanization (urban population share), living standards, and population age emerge as positive determinants of both risk and rates across waves. Third, keeping all else constant, lower shares of workers working from home correlate with greater infection risk during the second wave. While much attention has focused on intra-urban disease spread, our findings suggest that understanding spatial determinants across human settlements is also important for managing current and future pandemics.

4.
Sci Rep ; 10(1): 17241, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057014

RESUMO

The shift towards urban living is changing food demand. Past studies on India show significant urban-rural differences in food consumption. However, a scientific understanding of the underlying relationships between urbanization and food consumption is limited. This study provides the first detailed analysis of how urbanization influences both quantity and diversity of food consumption in India by harnessing the strength of multiple datasets, including consumer expenditure surveys, satellite imagery, and census data. Our statistical analysis shows three main findings. First, in contrast to existing studies, we find that much of the variation in food consumption quantity is due to income and not urbanization. After controlling for income and state-level differences, our results show that average consumption is higher in urban than rural areas for fewer than 10% of all commodities. That is, there is nearly no difference in average consumption between urban and rural residents. Second, we find the influence of urbanization as a population share on food consumption diversity to be statistically insignificant (p-value > 0.1). Instead, the results show that infrastructure, market access, percentage working women in urban areas, and norms and institutions have a statistically significant influence. Third, all covariates of food consumption diversity we tested were found to be associated with urbanization. This suggests that urbanization influences on food consumption are both indirect and multidimensional. These results show that increases in the urban population size alone do not explain changes in food consumption in India. If we are to understand how food consumption may change in the future due to urbanization, the study points to the need for a more complex and multidimensional understanding of the urbanization process that goes beyond demographic shifts.


Assuntos
Ingestão de Alimentos , Urbanização , Demografia , Humanos , Renda , Índia , População Rural/estatística & dados numéricos , Fatores Socioeconômicos , População Urbana/estatística & dados numéricos
5.
J Environ Manage ; 148: 53-66, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958549

RESUMO

We examine the impacts of urbanization on agricultural land loss in India from 2001 to 2010. We combined a hierarchical classification approach with econometric time series analysis to reconstruct land-cover change histories using time series MODIS 250 m VI images composited at 16-day intervals and night time lights (NTL) data. We compared estimates of agricultural land loss using satellite data with agricultural census data. Our analysis highlights six key results. First, agricultural land loss is occurring around smaller cities more than around bigger cities. Second, from 2001 to 2010, each state lost less than 1% of its total geographical area due to agriculture to urban expansion. Third, the northeastern states experienced the least amount of agricultural land loss. Fourth, agricultural land loss is largely in states and districts which have a larger number of operational or approved SEZs. Fifth, urban conversion of agricultural land is concentrated in a few districts and states with high rates of economic growth. Sixth, agricultural land loss is predominantly in states with higher agricultural land suitability compared to other states. Although the total area of agricultural land lost to urban expansion has been relatively low, our results show that since 2006, the amount of agricultural land converted has been increasing steadily. Given that the preponderance of India's urban population growth has yet to occur, the results suggest an increase in the conversion of agricultural land going into the future.


Assuntos
Conservação dos Recursos Naturais , Produtos Agrícolas , Urbanização/tendências , Censos , Previsões , Sistemas de Informação Geográfica , Humanos , Índia , Crescimento Demográfico , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...