Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 203: 105989, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084792

RESUMO

The present study focused on the isolation and identification of CP and TCP bacteria degrading bacteria from the rhizospheric zone of aromatic grasses i.e. palmarosa (Cymbopogon martinii (Roxb. Wats), lemongrass (Cymbopogon flexuosus) and vetiver (Chrysopogon zizaniodes (L.) Nash.). So that these isolates alone or in combination with the vegetation of aromatic grasses will be used to clean up CP-contaminated soils. The study also explored enzymatic activities, CO2 release, dechlorination potential, and degradation pathways of bacterial strains. A total of 53 CP-tolerant bacteria were isolated on their physical characteristics and their ability to degrade CP. The ten highly CP-tolerant isolates were Pseudomonas aeruginosa Pa608, three strains of Pseudomonas hibiscicola R4-721 from different rhizosphere, Enterococcus lectis PP2a, Pseudomonas monteilii NBFPALD_RAS131, Enterobacter cloacae L3, Stenotrophomonas maltophilia PEG-390, Escherichia coli ABRL132, and Escherichia coli O104:H4 strain FWSEC0009. The CO2 emission and phosphatase activities of the isolates varied from 3.1 to 8.6 µmol mL-1 and 12.3 to 31 µmol PNP h-1, respectively in the CP medium. The degradation kinetics of CP by these isolates followed a one-phase decay model with a dissipation rate ranging from 0.048 to 0.41 d-1 and a half-life of 1.7-14.3 days. The growth data fitted in the SGompertz equation showed a growth rate (K) of 0.21 ± 0.28 to 0.91 ± 0.33 d-1. The P. monteilii strain had a faster growth rate while E. coli ABRL132 had slower growth among the isolates. The rate of TCP accumulation calculated by the SGompertz equation was 0.21 ± 0.02 to 1.18 ± 0.19 d-1. The Pseudomonas monteilii showed a lower accumulation rate of TCP. Among these, four highly effective isolates were Pseudomonas aeruginosa Pa608, Pseudomonas monteilii NBFPALD_RAS131, Stenotrophomonas maltophilia PEG-390, and Pseudomonas hibiscicola R4-721. Illustrations of the degradation pathways indicated that the difference in metabolic pathways of each isolate was associated with their growth rate, phosphatase, dehydrogenase, oxidase, and dechlorination activities.


Assuntos
Biodegradação Ambiental , Clorpirifos , Cinética , Clorpirifos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Poluentes do Solo/metabolismo , Microbiologia do Solo , Rizosfera , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Inseticidas/metabolismo , Dióxido de Carbono/metabolismo , Cymbopogon/metabolismo
2.
J Environ Manage ; 303: 114146, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838378

RESUMO

The presence of atrazine a persistent herbicide in soil poses a serious threat to the ecosystem. The biochar amendment in soil altered the fate of this herbicide by modifying the soil properties. The present study examines the dissipation and toxicity of atrazine in three contrasting soils (silty clay, sandy loam, and sandy clay) without and with biochar amendment (4%). The experiment was performed for 150 days with three application rates of atrazine (4, 8, and 10 mg kg-1). The speciation and degradation of atrazine, metabolite content, microbial biomass, and enzymatic activities were evaluated in all treatments. Three kinetic models and soil enzyme index were calculated to scrutinize the degradation of atrazine and its toxicity on soil biota, respectively. The goodness of fit statistical indices suggested that the first-order double exponential decay (FODE) model best described the degradation of atrazine in silty clay soil. However, a single first order with plateau (SFOP) was best fitted for atrazine degradation in sandy loam and sandy clay soils. The half-life of atrazine was higher in sandy clay soil (27-106 day-1) than silty clay (28-77 day-1) and sandy loam soil (27-83 day-1). The variations in the dissipation kinetics and half-life of the atrazine in three soil were associated with atrazine partitioning, availability of mineral content (silica, aluminum, and iron), and soil microbial biomass carbon. Biochar amendment significantly reduced the plateau in the kinetic curve and also reduced the atrazine toxicity on soil microbiota. Overall, biochar was more effective in sandy clay soil for the restoration of soil microbial activities under atrazine stress due to modulation in the pH and more improved soil quality.


Assuntos
Atrazina , Microbiota , Poluentes do Solo , Atrazina/toxicidade , Carvão Vegetal , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
J Hazard Mater ; 406: 124302, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162235

RESUMO

The present study explores the differential responses of two genotypes (APwC: wild collection and APMS: mass selection line) of A. paniculata against the three application rates of arsenic (42, 126, and 200 mg kg-1). The oxidative enzymes, As accumulation in different tissues, plant growth, and content of pharmacologically important ent-labdane-related diterpenes (ent-LRDs) of the two genotypes were evaluated in the study. Results demonstrated that As uptake significantly reduced plant biomass in APwC and APMS by 5-41.5% and 9-33% in a dose-response manner, respectively. The APMS exhibited lower bioconcentration and translocation factors, higher As tolerance index, and higher content of ent-LRDs as compared to APWC. As treatment induced a decrease in the sum of four metabolite content of APMS (1.43 times) and an increase in that of APWC (1.12 times) as compared to control. Likewise, variance in the production of 5,7,2',3'-tetramethoxyflavanone, and stress enzymes was also observed between APwC and APMS. The increase in the expression of ApCPS2 suggested its involvement in channeling of metabolic flux towards the biosynthesis of ent-LRDs under As stress.


Assuntos
Andrographis , Arsênio , Diterpenos , Arsênio/toxicidade , Genótipo , Estresse Oxidativo/genética , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA