Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375883

RESUMO

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Assuntos
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raízes de Plantas/metabolismo , Simbiose/genética , Laccaria/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Monoterpenos/metabolismo
2.
J Fungi (Basel) ; 8(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35887462

RESUMO

Copper-based formulations of wood preservatives are widely used in industry to protect wood materials from degradation caused by fungi. Wood treated with preservatives generate toxic waste that currently cannot be properly recycled. Despite copper being very efficient as an antifungal agent against most fungi, some species are able to cope with these high metal concentrations. This is the case for the brown-rot fungus Rhodonia placenta and the white-rot fungus Phanerochaete chrysosporium, which are able to grow efficiently in pine wood treated with Tanalith E3474. Here, we aimed to test the abilities of the two fungi to cope with copper in this toxic environment and to decontaminate Tanalith E-treated wood. A microcosm allowing the growth of the fungi on industrially treated pine wood was designed, and the distribution of copper between mycelium and wood was analysed within the embedded hyphae and wood particles using coupled X-ray fluorescence spectroscopy and Scanning Electron Microscopy (SEM)/Electron Dispersive Spectroscopy (EDS). The results demonstrate the copper biosorption capacities of P. chrysosporium and the production of copper-oxalate crystals by R. placenta. These data coupled to genomic analysis suggest the involvement of additional mechanisms for copper tolerance in these rot fungi that are likely related to copper transport (import, export, or vacuolar sequestration).

3.
Biology (Basel) ; 11(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35741382

RESUMO

Plants form beneficial symbioses with a wide variety of microorganisms. Among these, endophytes, arbuscular mycorrhizal fungi (AMF), and nitrogen-fixing rhizobia are some of the most studied and well understood symbiotic interactions. These symbiotic microorganisms promote plant nutrition and growth. In exchange, they receive the carbon and metabolites necessary for their development and multiplication. In addition to their role in plant growth and development, these microorganisms enhance host plant tolerance to a wide range of environmental stress. Multiple studies have shown that these microorganisms modulate the phytohormone metabolism in the host plant. Among the phytohormones involved in the plant defense response against biotic environment, salicylic acid (SA) plays an important role in activating plant defense. However, in addition to being a major actor in plant defense signaling against pathogens, SA has also been shown to be involved in plant-microbe symbiotic interactions. In this review, we summarize the impact of SA on the symbiotic interactions. In addition, we give an overview of the impact of the endophytes, AMF, and rhizobacteria on SA-mediated defense response against pathogens.

4.
Proc Biol Sci ; 287(1934): 20201493, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32873201

RESUMO

Legumes can meet their nitrogen requirements through root nodule symbiosis, which could also trigger plant systemic resistance against pests. The pea aphid Acyrthosiphon pisum, a legume pest, can harbour different facultative symbionts (FS) influencing various traits of their hosts. It is therefore worth determining if and how the symbionts of the plant and the aphid modulate their interaction. We used different pea aphid lines without FS or with a single one (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica) to infest Medicago truncatula plants inoculated with Sinorhizobium meliloti (symbiotic nitrogen fixation, SNF) or supplemented with nitrate (non-inoculated, NI). The growth of SNF and NI plants was reduced by aphid infestation, while aphid weight (but not survival) was lowered on SNF compared to NI plants. Aphids strongly affected the plant nitrogen fixation depending on their symbiotic status, suggesting indirect relationships between aphid- and plant-associated microbes. Finally, all aphid lines triggered expression of Pathogenesis-Related Protein 1 (PR1) and Proteinase Inhibitor (PI), respective markers for salicylic and jasmonic pathways, in SNF plants, compared to only PR1 in NI plants. We demonstrate that the plant symbiotic status influences plant-aphid interactions while that of the aphid can modulate the amplitude of the plant's defence response.


Assuntos
Afídeos/fisiologia , Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Animais , Nitratos , Nitrogênio/metabolismo , Ácido Salicílico , Serratia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...