Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(6): 161, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067621

RESUMO

It is well acknowledged that microplastics are a major environmental problem and that the use of plastics, both petro- and bio- based, should be reduced. Nevertheless, it is also a necessity to reduce the amount of the already spread plastics. These cannot be easily degraded in the nature and accumulate in the food supply chain with major danger for animals and human life. It has been shown in the literature that advanced oxidation processes (AOPs) modify the surface of polylactic acid (PLA) materials in a way that bacteria more efficiently dock on their surface and eventually degrade them. In the present work we investigated the influence of different AOPs (ultrasounds, ultraviolet irradiation, and their combination) on the biodegradability of PLA films treated for different times between 1 and 6 h. The pre-treated samples have been degraded using a home model compost as well as a cocktail of commercial enzymes at mesophilic temperatures (37 °C and 42 °C, respectively). Degradation degree has been measured and degradation products have been identified. Excellent degradation of PLA films has been achieved with enzyme cocktail containing commercial alkaline proteases and lipases of up to 90% weight loss. For the first time, we also report valorization of PLA into bacterial nanocellulose after enzymatic hydrolysis of the samples.


Assuntos
Compostagem , Plásticos , Animais , Humanos , Poliésteres , Bactérias
2.
Ultrason Sonochem ; 76: 105627, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34130189

RESUMO

New biotechnological processes using microorganisms and/or enzymes to convert carbonaceous resources, either biomass or depolymerized plastics into a broad range of different bioproducts are recognized for their high potential for reduced energy consumption and reduced GHG emissions. However, the hydrophobicity, high molecular weight, chemical and structural composition of most of them hinders their biodegradation. A solution to reduce the impact of non-biodegradable polymers spread in the environment would be to make them biodegradable. Different approaches are evaluated for enhancing their biodegradation. The aim of this work is to develop and optimize the ultrasonication (US) and UV photodegradation and their combination as well as dielectric barrier discharge (DBD) plasma as pre-treatment technologies, which change surface properties and enhance the biodegradation of plastic by surface oxidation and thus helping bacteria to dock on them. Polylactic acid (PLA) has been chosen as a model polymer to investigate its surface degradation by US, UV, and DBD plasma using surface characterization methods like X-ray Photoelectron Spectroscopy (XPS) and Confocal Laser Microscopy (CLSM), Atomic Force Microscopy (AFM) as well as FT-IR and drop contour analysis. Both US and UV affect the surface properties substantially by eliminating the oxygen content of the polymer but in a different way, while plasma oxidizes the surface.


Assuntos
Plásticos/química , Poliésteres/química , Reciclagem/economia , Propriedades de Superfície
3.
Ultrason Sonochem ; 71: 105367, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33125964

RESUMO

In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.

4.
RSC Adv ; 8(48): 27438-27447, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35539981

RESUMO

In this work, the compatibility of four commercially available organic phase change materials, with melting points in the temperature range 44-58 °C and with engineering polymers high density polyethylene (HDPE) and polypropylene (PP), is investigated. These polymers are used for the design and manufacture of hot and cold thermal energy storage tanks or encapsulation media. The study involves interaction of polymer specimens with the four different phase change materials for a period of time up to 40 days under high temperature. The mass change, mechanical strength and properties of the polymers were tested. The wt% uptake reached 6.4 wt% for PP and 5.8 wt% for HDPE. The strength of HDPE is immediately decreased by Day 7 but at a significant level restored after Day 28. No such effect was found for PP. The surface wetting as well as thermal properties measured (DSC) on the specimens provided an insight on the interaction of the absorbed phase change materials with the polymer. An in depth distribution over time was observed with significant decrease in the mechanical strength of the polymers. An epoxy-based resin was also evaluated under the same conditions and is suggested as a protective coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...