Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(19): 197401, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622035

RESUMO

Exciton polaritons (EPs) are ubiquitous light-matter excitations under intense investigation as test beds of fundamental physics and as components for all-optical computing. Owing to their unique attributes and facile experimental tunability, EPs potentially enable strong nonlinearities, condensation, and superfluidity at room temperature. However, the diffraction limit of light and the momentum content of fast electron probes preclude the characterization of EPs in nanoscale structured cavities exhibiting energy-momentum dispersion. Here we present fully relativistic analytical theory and companion numerical simulations showing that these limitations can be overcome to measure EPs in periodic nanophotonic cavities on their natural energy, momentum, and length scales via lattice electron energy gain spectroscopy. With the combined high momentum resolution of light and nanoscale spatial resolution of focused electron beams, lattice electron energy gain spectroscopy can expose deeply subwavelength EP features using currently available monochromated, aberration-corrected scanning transmission electron microscopes.

2.
Biophys J ; 121(12): 2389-2397, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35598046

RESUMO

Ripples arise at edges of petals of blooming Lilium casablanca flowers and at edges of torn plastic sheets. In both systems, ripples are a consequence of excess length along the edge of a sheet. Through the use of time-lapse videos of blooming lilies and published images of torn plastic sheets, we find that ripples in both systems are well described by the scaling relationship a∝w(L-w), where a is amplitude, w is wavelength, and L is arc length. A phenomenological relationship previously reported for self-similar ripple patterns, namely ⟨a⟩∝⟨w⟩, can be recovered by assuming that buckling stress is constant. Excess length along petal edges can also influence their overall Gaussian curvature, such that petals invert from a cup shape to a saddle shape upon blooming. Previous simulations of these shape changes have assumed that petal thickness decreases at least quadratically. Here, we evaluate tomograms of several varieties of lily buds and find that this assumption is valid along the short axis of the buds, but not the long axis. A challenge of employing traditional tomography methods to measure petal thickness is that the sample is destroyed; a single bud cannot be followed through the entire blooming process. To address this challenge, we provide proof of principle that the nondestructive, label-free method of x-ray tomography produces high-contrast three-dimensional scans on time scales short enough to follow lily blooming.


Assuntos
Lilium , Flores , Plásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...