Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254907

RESUMO

Acute leukemia is a particularly problematic collection of hematological cancers, and, while somewhat rare, the survival rate of patients is typically abysmal without bone marrow transplantation. Furthermore, traditional chemotherapies used as standard-of-care for patients cause significant side effects. Understanding the evolution of leukemia to identify novel targets and, therefore, drug treatment regimens is a significant medical need. Genomic rearrangements and other structural variations (SVs) have long been known to be causative and pathogenic in multiple types of cancer, including leukemia. These SVs may be involved in cancer initiation, progression, clonal evolution, and drug resistance, and a better understanding of SVs from individual patients may help guide therapeutic options. Here, we show the utilization of optical genome mapping (OGM) to detect known and novel SVs in the samples of patients with leukemia. Importantly, this technology provides an unprecedented level of granularity and quantitation unavailable to other current techniques and allows for the unbiased detection of novel SVs, which may be relevant to disease pathogenesis and/or drug resistance. Coupled with the chemosensitivities of these samples to FDA-approved oncology drugs, we show how an impartial integrative analysis of these diverse datasets can be used to associate the detected genomic rearrangements with multiple drug sensitivity profiles. Indeed, an insertion in the gene MUSK is shown to be associated with increased sensitivity to the clinically relevant agent Idarubicin, while partial tandem duplication events in the KMT2A gene are related to the efficacy of another frontline treatment, Cytarabine.

2.
Genes (Basel) ; 14(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895217

RESUMO

The recommended practice for individuals suspected of a genetic etiology for disorders including unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), and multiple congenital anomalies (MCA) involves a genetic testing workflow including chromosomal microarray (CMA), Fragile-X testing, karyotype analysis, and/or sequencing-based gene panels. Since genomic imbalances are often found to be causative, CMA is recommended as first tier testing for many indications. Optical genome mapping (OGM) is an emerging next generation cytogenomic technique that can detect not only copy number variants (CNVs), triploidy and absence of heterozygosity (AOH) like CMA, but can also define the location of duplications, and detect other structural variants (SVs), including balanced rearrangements and repeat expansions/contractions. This study compares OGM to CMA for clinically reported genomic variants, some of these samples also have structural characterization by fluorescence in situ hybridization (FISH). OGM was performed on IRB approved, de-identified specimens from 55 individuals with genomic abnormalities previously identified by CMA (61 clinically reported abnormalities). SVs identified by OGM were filtered by a control database to remove polymorphic variants and against an established gene list to prioritize clinically relevant findings before comparing with CMA and FISH results. OGM results showed 100% concordance with CMA findings for pathogenic variants and 98% concordant for all pathogenic/likely pathogenic/variants of uncertain significance (VUS), while also providing additional insight into the genomic structure of abnormalities that CMA was unable to provide. OGM demonstrates equivalent performance to CMA for CNV and AOH detection, enhanced by its ability to determine the structure of the genome. This work adds to an increasing body of evidence on the analytical validity and ability to detect clinically relevant abnormalities identified by CMA. Moreover, OGM identifies translocations, structures of duplications and complex CNVs intractable by CMA, yielding additional clinical utility.


Assuntos
Benchmarking , Deficiências do Desenvolvimento , Criança , Humanos , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Hibridização in Situ Fluorescente , Cariótipo , Mapeamento Cromossômico
3.
Genes (Basel) ; 14(9)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37761823

RESUMO

Homologous recombination deficiency (HRD) is characterized by the inability of a cell to repair the double-stranded breaks using the homologous recombination repair (HRR) pathway. The deficiency of the HRR pathway results in defective DNA repair, leading to genomic instability and tumorigenesis. The presence of HRD has been found to make tumors sensitive to ICL-inducing platinum-based therapies and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi). However, there are no standardized methods to measure and report HRD phenotypes. Herein, we compare optical genome mapping (OGM), chromosomal microarray (CMA), and a 523-gene NGS panel for HRD score calculations. This retrospective study included the analysis of 196 samples, of which 10 were gliomas, 176 were hematological malignancy samples, and 10 were controls. The 10 gliomas were evaluated with both CMA and OGM, and 30 hematological malignancy samples were evaluated with both the NGS panel and OGM. To verify the scores in a larger cohort, 135 cases were evaluated with the NGS panel and 71 cases with OGM. The HRD scores were calculated using a combination of three HRD signatures that included loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transitions (LST). In the ten glioma cases analyzed with OGM and CMA using the same DNA (to remove any tumor percentage bias), the HRD scores (mean ± SEM) were 13.2 (±4.2) with OGM compared to 3.7 (±1.4) with CMA. In the 30 hematological malignancy cases analyzed with OGM and the 523-gene NGS panel, the HRD scores were 7.6 (±2.2) with OGM compared to 2.6 (±0.8) with the 523-gene NGS panel. OGM detected 70.8% and 66.8% of additional variants that are considered HRD signatures in gliomas and hematological malignancies, respectively. The higher sensitivity of OGM to capture HRD signature variants might enable a more accurate and precise correlation with response to PARPi and platinum-based drugs. This study reveals HRD signatures that are cryptic to current standard of care (SOC) methods used for assessing the HRD phenotype and presents OGM as an attractive alternative with higher resolution and sensitivity to accurately assess the HRD phenotype.


Assuntos
Glioma , Neoplasias Hematológicas , Humanos , Estudos Retrospectivos , Glioma/genética , Pentosiltransferases , Poli(ADP-Ribose) Polimerases , Recombinação Homóloga , Mapeamento Cromossômico
4.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168210

RESUMO

Oncogene amplification is a major driver of cancer pathogenesis. Breakage fusion bridge (BFB) cycles, like extrachromosomal DNA (ecDNA), can lead to high copy numbers of oncogenes, but their impact on intratumoral heterogeneity, treatment response, and patient survival are not well understood due to difficulty in detecting them by DNA sequencing. We describe a novel algorithm that detects and reconstructs BFB amplifications using optical genome maps (OGMs), called OM2BFB. OM2BFB showed high precision (>93%) and recall (92%) in detecting BFB amplifications in cancer cell lines, PDX models and primary tumors. OM-based comparisons demonstrated that short-read BFB detection using our AmpliconSuite (AS) toolkit also achieved high precision, albeit with reduced sensitivity. We detected 371 BFB events using whole genome sequences from 2,557 primary tumors and cancer lines. BFB amplifications were preferentially found in cervical, head and neck, lung, and esophageal cancers, but rarely in brain cancers. BFB amplified genes show lower variance of gene expression, with fewer options for regulatory rewiring relative to ecDNA amplified genes. BFB positive (BFB (+)) tumors showed reduced heterogeneity of amplicon structures, and delayed onset of resistance, relative to ecDNA(+) tumors. EcDNA and BFB amplifications represent contrasting mechanisms to increase the copy numbers of oncogene with markedly different characteristics that suggest different routes for intervention.

5.
Genome Biol ; 23(1): 255, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514120

RESUMO

BACKGROUND: The cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples. RESULTS: We systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy. CONCLUSIONS: A high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Análise de Sequência de DNA/métodos , Variação Estrutural do Genoma , Tecnologia , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Humano , Neoplasias/genética
6.
Genes (Basel) ; 13(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35886053

RESUMO

The Hawaiian monk seal (HMS) is the single extant species of tropical earless seals of the genus Neomonachus. The species survived a severe bottleneck in the late 19th century and experienced subsequent population declines until becoming the subject of a NOAA-led species recovery effort beginning in 1976 when the population was fewer than 1000 animals. Like other recovering species, the Hawaiian monk seal has been reported to have reduced genetic heterogeneity due to the bottleneck and subsequent inbreeding. Here, we report a chromosomal reference assembly for a male animal produced using a variety of methods. The final assembly consisted of 16 autosomes, an X, and portions of the Y chromosomes. We compared variants in this animal to other HMS and to a frequently sequenced human sample, confirming about 12% of the variation seen in man. To confirm that the reference animal was representative of the HMS, we compared his sequence to that of 10 other individuals and noted similarly low variation in all. Variation in the major histocompatibility (MHC) genes was nearly absent compared to the orthologous human loci. Demographic analysis predicts that Hawaiian monk seals have had a long history of small populations preceding the bottleneck, and their current low levels of heterozygosity may indicate specialization to a stable environment. When we compared our reference assembly to that of other species, we observed significant conservation of chromosomal architecture with other pinnipeds, especially other phocids. This reference should be a useful tool for future evolutionary studies as well as the long-term management of this species.


Assuntos
Focas Verdadeiras , Animais , Cromossomos , Instabilidade Genômica , Havaí/epidemiologia , Humanos , Masculino , Focas Verdadeiras/genética
7.
J Pers Med ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670576

RESUMO

Genomic structural variants comprise a significant fraction of somatic mutations driving cancer onset and progression. However, such variants are not readily revealed by standard next-generation sequencing. Optical genome mapping (OGM) surpasses short-read sequencing in detecting large (>500 bp) and complex structural variants (SVs) but requires isolation of ultra-high-molecular-weight DNA from the tissue of interest. We have successfully applied a protocol involving a paramagnetic nanobind disc to a wide range of solid tumors. Using as little as 6.5 mg of input tumor tissue, we show successful extraction of high-molecular-weight genomic DNA that provides a high genomic map rate and effective coverage by optical mapping. We demonstrate the system's utility in identifying somatic SVs affecting functional and cancer-related genes for each sample. Duplicate/triplicate analysis of select samples shows intra-sample reliability but also intra-sample heterogeneity. We also demonstrate that simply filtering SVs based on a GRCh38 human control database provides high positive and negative predictive values for true somatic variants. Our results indicate that the solid tissue DNA extraction protocol, OGM and SV analysis can be applied to a wide variety of solid tumors to capture SVs across the entire genome with functional importance in cancer prognosis and treatment.

8.
PLoS Genet ; 15(3): e1008075, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30917130

RESUMO

Human chromosome 15q25 is involved in several disease-associated structural rearrangements, including microdeletions and chromosomal markers with inverted duplications. Using comparative fluorescence in situ hybridization, strand-sequencing, single-molecule, real-time sequencing and Bionano optical mapping analyses, we investigated the organization of the 15q25 region in human and nonhuman primates. We found that two independent inversions occurred in this region after the fission event that gave rise to phylogenetic chromosomes XIV and XV in humans and great apes. One of these inversions is still polymorphic in the human population today and may confer differential susceptibility to 15q25 microdeletions and inverted duplications. The inversion breakpoints map within segmental duplications containing core duplicons of the GOLGA gene family and correspond to the site of an ancestral centromere, which became inactivated about 25 million years ago. The inactivation of this centromere likely released segmental duplications from recombination repression typical of centromeric regions. We hypothesize that this increased the frequency of ectopic recombination creating a hotspot of hominid inversions where dispersed GOLGA core elements now predispose this region to recurrent genomic rearrangements associated with disease.


Assuntos
Inversão Cromossômica , Cromossomos Humanos Par 15/genética , Duplicações Segmentares Genômicas , Animais , Autoantígenos/genética , Instabilidade Cromossômica , Evolução Molecular , Dosagem de Genes , Rearranjo Gênico , Variação Genética , Proteínas da Matriz do Complexo de Golgi/genética , Hominidae/genética , Humanos , Família Multigênica , Filogenia , Primatas/genética , Recombinação Genética , Especificidade da Espécie
9.
Science ; 360(6393)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880660

RESUMO

Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors.


Assuntos
Evolução Molecular , Genoma Humano , Hominidae/genética , Animais , Mapeamento de Sequências Contíguas , Variação Genética , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
10.
Nat Methods ; 12(8): 780-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26121404

RESUMO

We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Algoritmos , Mapeamento Cromossômico , Diploide , Biblioteca Gênica , Variação Genética , Genoma , Haplótipos , Humanos , Nucleotídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Sequências de Repetição em Tandem
11.
G3 (Bethesda) ; 4(1): 63-5, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24192839

RESUMO

We observed that current high-throughput sequencing approaches only detected a fraction of the full size-spectrum of insertions, deletions, and copy number variants compared with a previously published, Sanger-sequenced human genome. The sensitivity for detection was the lowest in the 100- to 10,000-bp size range, and at DNA repeats, with copy number gains harder to delineate than losses. We discuss strategies for discovering the full spectrum of genetic variation necessary for disease association studies.


Assuntos
Variação Genética , Variações do Número de Cópias de DNA , Deleção de Genes , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
12.
Hum Mutat ; 34(2): 345-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23086744

RESUMO

Even with significant advances in technology, few studies of structural variation have yet resolved to the level of the precise nucleotide junction. We examined the sequence of 408,532 gains, 383,804 losses, and 166 inversions from the first sequenced personal genome, to quantify the relative proportion of mutational mechanisms. Among small variants (<1 kb), we observed that 72.6% of them were associated with nonhomologous processes and 24.9% with microsatellites events. Medium-size variants (<10 kb) were commonly related to minisatellites (25.8%) and retrotransposons (24%), whereas 46.2% of large variants (>10 kb) were associated with nonallelic homologous recombination. We genotyped eight new breakpoint-resolved inversions at (3q26.1, Xp11.22, 7q11.22, 16q23.1, 4q22.1, 1q31.3, 6q27, and 16q24.1) in human populations to elucidate the structure of these presumed benign variants. Three of these inversions (3q26.1, 7q11.22, and 16q23.1) were accompanied by unexpected complex rearrangements. In particular, the 16q23.1 inversion and an accompanying deletion would create conjoined chymotrypsinogen genes (CTRB1 and CTRB2), disrupt their gene structure, and exhibit differentiated allelic frequencies among populations. Also, two loci (Xp11.3 and 6q27) of potential reference assembly orientation errors were found. This study provides a thorough account of formation mechanisms for structural variants, and reveals a glimpse of the dynamic structure of inversions.


Assuntos
Variação Genética , Genoma Humano , Análise de Sequência de DNA/métodos , Deleção Cromossômica , Inversão Cromossômica , Cromossomos Humanos Par 16/genética , Quimotripsina/genética , Quimotripsina/metabolismo , Quimotripsinogênio/genética , Quimotripsinogênio/metabolismo , Frequência do Gene , Haplótipos , Humanos , Repetições de Microssatélites , Repetições Minissatélites , Retroelementos , Trissomia/genética
13.
Nature ; 464(7289): 704-12, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19812545

RESUMO

Structural variations of DNA greater than 1 kilobase in size account for most bases that vary among human genomes, but are still relatively under-ascertained. Here we use tiling oligonucleotide microarrays, comprising 42 million probes, to generate a comprehensive map of 11,700 copy number variations (CNVs) greater than 443 base pairs, of which most (8,599) have been validated independently. For 4,978 of these CNVs, we generated reference genotypes from 450 individuals of European, African or East Asian ancestry. The predominant mutational mechanisms differ among CNV size classes. Retrotransposition has duplicated and inserted some coding and non-coding DNA segments randomly around the genome. Furthermore, by correlation with known trait-associated single nucleotide polymorphisms (SNPs), we identified 30 loci with CNVs that are candidates for influencing disease susceptibility. Despite this, having assessed the completeness of our map and the patterns of linkage disequilibrium between CNVs and SNPs, we conclude that, for complex traits, the heritability void left by genome-wide association studies will not be accounted for by common CNVs.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Mutagênese/genética , Duplicação Gênica , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Grupos Raciais/genética , Reprodutibilidade dos Testes
14.
PLoS Biol ; 5(10): e254, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17803354

RESUMO

Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb) of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel) included 3,213,401 single nucleotide polymorphisms (SNPs), 53,823 block substitutions (2-206 bp), 292,102 heterozygous insertion/deletion events (indels)(1-571 bp), 559,473 homozygous indels (1-82,711 bp), 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.


Assuntos
Mapeamento Cromossômico , Diploide , Genoma Humano , Análise de Sequência de DNA , Sequência de Bases , Mapeamento Cromossômico/instrumentação , Mapeamento Cromossômico/métodos , Cromossomos Humanos , Cromossomos Humanos Y/genética , Dosagem de Genes , Genótipo , Haplótipos , Projeto Genoma Humano , Humanos , Mutação INDEL , Hibridização in Situ Fluorescente , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA/instrumentação , Análise de Sequência de DNA/métodos
15.
BMC Evol Biol ; 7 Suppl 1: S14, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17288572

RESUMO

BACKGROUND: Widespread transcription activities in the human genome were recently observed in high-resolution tiling array experiments, which revealed many novel transcripts that are outside of the boundaries of known protein or RNA genes. Termed as "TARs" (Transcriptionally Active Regions), these novel transcribed regions represent "dark matter" in the genome, and their origin and functionality need to be explained. Many of these transcripts are thought to code for novel proteins or non-protein-coding RNAs. We have applied an integrated bioinformatics approach to investigate the properties of these TARs, including cross-species conservation, and the ability to form stable secondary structures. The goal of this study is to identify a list of potential candidate sequences that are likely to code for functional non-protein-coding RNAs. We are particularly interested in the discovery of those functional RNA candidates that are primate-specific, i.e. those that do not have homologs in the mouse or dog genomes but in rhesus. RESULTS: Using sequence conservation and the probability of forming stable secondary structures, we have identified approximately 300 possible candidates for primate-specific noncoding RNAs. We are currently in the process of sequencing the orthologous regions of these candidate sequences in several other primate species. We will then be able to apply a "phylogenetic shadowing" approach to analyze the functionality of these ncRNA candidates. CONCLUSION: The existence of potential primate-specific functional transcripts has demonstrated the limitation of previous genome comparison studies, which put too much emphasis on conservation between human and rodents. It also argues for the necessity of sequencing additional primate species to gain a better and more comprehensive understanding of the human genome.


Assuntos
Genoma Humano , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pan troglodytes/genética , RNA Mensageiro/fisiologia , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Mensageiro/análise , RNA não Traduzido , Análise de Sequência de DNA , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...