Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38792699

RESUMO

Soil microbes are crucial in shaping the root-associated microbial communities. In this study, we analyzed the effect of the soil-root niche gradient on the diversity, composition, and assembly of the bacterial community and co-occurrence network of two cotton varieties. The results revealed that the bacterial communities in cotton soil-root compartment niches exhibited a skewed species abundance distribution, dominated by abundant taxa showing a strong spatial specificity. The assembly processes of the rhizosphere bacterial communities were mainly driven by stochastic processes, dominated by the enrichment pattern and supplemented by the depletion pattern to recruit bacteria from the bulk soil, resulting in a more stable bacterial community. The assembly processes of the endosphere bacterial communities were determined by processes dominated by the depletion pattern and supplemented by the enrichment pattern to recruit species from the rhizosphere, resulting in a decrease in the stability and complexity of the community co-occurrence network. The compartment niche shaped the diversity of the bacterial communities, and the cotton variety genotype was an important source of diversity in bacterial communities within the compartment niche. We suggest that the moderate taxa contribute to significantly more changes in the diversity of the bacterial community than the rare and abundant taxa during the succession of bacterial communities in the cotton root-soil continuum.

2.
Front Plant Sci ; 14: 1254103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662180

RESUMO

Introduction: Phosphorus (P) deficiency hinders cotton (Gossypium hirustum L.) growth and development, seriously affecting lint yield and fiber quality. However, it is still unclear how P fertilizer affects fiber length. Methods: Therefore, a two-year (2019-2020) pool-culture experiment was conducted using the split-plot design, with two cotton cultivars (CCRI-79; low-P tolerant and SCRC-28; low-P sensitive) as the main plot. Three soil available phosphorus (AP) contents (P0: 3 ± 0.5, P1: 6 ± 0.5, and P2 (control) with 15 ± 0.5 mg kg-1) were applied to the plots, as the subplot, to investigate the impact of soil AP content on cotton fiber elongation and length. Results: Low soil AP (P0 and P1) decreased the contents of the osmotically active solutes in the cotton fibers, including potassium ions (K+), malate, soluble sugar, and sucrose, by 2.2-10.2%, 14.4-47.3%, 8.7-24.5%, and 10.1-23.4%, respectively, inhibiting the vacuoles from facilitating fiber elongation through osmoregulation. Moreover, soil AP deficiency also reduced the activities of enzymes participated in fiber elongation (plasma membrane H+-ATPase (PM-H+-ATPase), vacuole membrane H+-ATPase (V-H+-ATPase), vacuole membrane H+-translocating inorganic pyrophosphatase (V-H+-PPase), and phosphoenolpyruvate carboxylase (PEPC)). The PM-H+-ATPase, V-H+-ATPase, V-H+-PPase, and PEPC were reduced by 8.4-33.0%, 7.0-33.8%, 14.1-38.4%, and 16.9-40.2%, respectively, inhibiting the transmembrane transport of the osmotically active solutes and acidified conditions for fiber cell wall, thus limiting the fiber elongation. Similarly, soil AP deficiency reduced the fiber length by 0.6-3.0 mm, mainly due to the 3.8-16.3% reduction of the maximum velocity of fiber elongation (VLmax). Additionally, the upper fruiting branch positions (FB10-11) had higher VLmax and longer fiber lengths under low soil AP. Discussion: Cotton fibers with higher malate content and V-H+-ATPase and V-H+-PPase activities yielded longer fibers. And the malate and soluble sugar contents and V-H+-ATPase and PEPC activities in the SCRC-28's fiber were more sensitive to soil AP deficiency in contrast to those of CCRI-79, possibly explaining the SCRC-28 fiber length sensitivity to low soil AP.

3.
Theor Appl Genet ; 136(2): 27, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810826

RESUMO

KEY MESSAGE: Genomic analysis of upland cotton revealed that cold tolerance was associated with ecological distribution. GhSAL1 on chromosome D09 negatively regulated cold tolerance of upland cotton. Cotton can undergo low-temperature stress at the seedling emergence stage, which adversely affects growth and yield; however, the regulatory mechanism underlying cold tolerance remains nebulous. Here, we analyze the phenotypic and physiological parameters in 200 accessions from 5 ecological distributions under constant chilling (CC) and diurnal variation of chilling (DVC) stresses at the seedling emergence stage. All accessions were clustered into four groups, of which Group IV, with most germplasms from the northwest inland region (NIR), had better phenotypes than Groups I-III under the two kinds of chilling stresses. A total of 575 significantly associated single-nucleotide polymorphism (SNP) were identified, and 35 stable genetic quantitative trait loci (QTL) were obtained, of which 5 were associated with traits under CC and DVC stress, respectively, while the remaining 25 were co-associated. The accumulation of dry weight (DW) of seedling was associated with the flavonoid biosynthesis process regulated by Gh_A10G0500. The emergence rate (ER), DW, and total length of seedling (TL) under CC stress were associated with the SNPs variation of Gh_D09G0189 (GhSAL1). GhSAL1HapB was the elite haplotype, which increased ER, DW, and TL by 19.04%, 11.26%, and 7.69%, respectively, compared with that of GhSAL1HapA. The results of virus-induced gene silencing (VIGS) experiment and determination of metabolic substrate content preliminarily illustrated that GhSAL1 negatively regulated cotton cold tolerance through IP3-Ca2+ signaling pathway. The elite haplotypes and candidate genes identified in this study could be used to improve cold tolerance at the seedling emergence stage in future upland cotton breeding.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Gossypium/genética , Estudo de Associação Genômica Ampla/métodos , Mapeamento Cromossômico , Plântula/genética , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Plant Sci ; 329: 111608, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36717027

RESUMO

The MYB transcription factor (TF) family is among the largest TF families and plays an important role in plant growth and stress response. However, few studies have investigated the role of the MYB gene in drought resistance in cotton. In this study, we analysed the drought transcriptomic data of cotton and identified that the GhMYB102 gene was significantly upregulated in upland cotton during the early stages of drought stress. Bioinformatics analysis showed that the amino acid sequence encoded by GhMYB102 contained two highly conserved MYB binding domains belonging to R2R3-MYB TFs. GhMYB102 was most closely related to AtMYB102. GhMYB102 is mainly expressed in roots and is induced by abiotic stresses and abscisic acid (ABA); it is localised in the nucleus and has transcriptional activation activity. Silencing of GhMYB102 decreased plant drought resistance. In addition, dual-luciferase assays and yeast single hybridisation analysis showed that GhMYB102 could directly bind the MYB motif elements in the promoter regions of GhNCED1 and GhZAT10. These results indicate that GhMYB102 plays a positive role in drought tolerance by regulating the expression of GhNCED1 and GhZAT10. Thus, GhMYB102 enhances drought resistance by participating in ABA biosynthesis or regulating the expression of drought-responsive genes.


Assuntos
Secas , Gossypium , Gossypium/genética , Resistência à Seca , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
5.
Theor Appl Genet ; 135(9): 3161-3176, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35965278

RESUMO

KEY MESSAGE: Two regions located at chromosome A05 and D04 were found to be significantly associated with 0-0.5 mm and 0.5-2 mm diameter roots, respectively, and two candidate genes related to root development were identified. Roots absorb water and nutrients, and play an important role in plant growth. However, there are few genetic developmental studies on cotton root structural traits. In this study, we used 200 upland cotton (Gossypium hirsutum L.) varieties to analyze the phenotypic variation of 43 traits. A total of 2001 related single-nucleotide polymorphism (SNP) sites located within or near 1046 genes were detected through a genome-wide association study (GWAS). The 32 root traits were linked to SNPs that corresponded to 317 nonrepetitive genes. For SNPs associated with root length and 0-0.5 mm diameter root traits, a significant peak appeared on chromosome A05 (between 21.91 and 22.24 Mb). For SNPs associated with root surface area, root volume and 0.5-2 mm diameter root traits, a significant peak appeared on chromosome D04 (between 7.35 and 7.70 Mb). Within these two key regions, SNPs were detected in the promoter and coding regions of two candidate genes, GhTRL1-A05 and GhPIN8-D04. The expression levels of these two genes also changed significantly according to transcriptome sequencing and quantitative real-time PCR (qRT-PCR). After silencing the GhTRL1 and GhPIN8 genes via virus-induced gene silencing (VIGS), we found that the plants expressing TRV2::GhTRL1 and TRV2::GhPIN8 had a reduced root length, surface area. Moreover, the contents of cis-12-oxo-phytodienoic acid (cis-OPDA), isopentenyl adenosine (iPR) and cis-zeatin (cZ) in the roots of the plants expressing TRV2::GhTRL1 decreased. This study contributes to the cultivation and improvement of cotton varieties.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium , Adenosina , Gossypium/genética , Água , Zeatina
6.
J Exp Bot ; 73(7): 2222-2237, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34919655

RESUMO

Cold stress is a major environmental factor affecting plant growth and development. Although some plants have developed resistance to cold stress, the molecular mechanisms underlying this process are poorly understood. Using genome-wide association mapping with 200 cotton accessions collected from different regions, we identified variations in the short chain alcohol dehydrogenase gene, GhSAD1, that responds to cold stress. Virus-induced gene silencing and overexpression in Arabidopsis revealed that GhSAD1 fulfils important roles in cold stress responses. Ectopic expression of a haploid genotype of GhSAD1 (GhSAD1HapB) in Arabidopsis increased cold tolerance. Silencing of GhSAD1HapB resulted in a decrease in abscisic acid (ABA) content. Conversely, overexpression of GhSAD1HapB increased ABA content. GhSAD1HapB regulates cold stress responses in cotton through modulation of C-repeat binding factor activity, which regulates ABA signalling. GhSAD1HapB induces the expression of COLD-REGULATED (COR) genes and increases the amount of metabolites associated with cold stress tolerance. Overexpression of GhSAD1HapB partially complements the phenotype of the Arabidopsis ABA2 mutant, aba2-1. Collectively, these findings increase our understanding of the mechanisms underlying GhSAD1-mediated cold stress responses in cotton.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico
7.
PLoS One ; 16(2): e0245070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524020

RESUMO

In plants, brassinosteroids (BRs) are a class of steroidal hormones that are involved in numerous physiological responses. However, the function of BRs in cold tolerance in cotton has not been explored. In this study, cotton seedlings were treated with five concentrations (0, 0.05, 0.1, 0.2, 0.5 and 1.0 mg/L) of 24-Epibrassinolide (EBR) at 4°C. We measured the electrolyte leakage, malondialdehyde (MDA) content, proline content, and net photosynthesis rate (Pn) of the seedlings, which showed that EBR treatment increased cold tolerance in cotton in a dose-dependent manner, and that 0.2 mg/L is an optimum concentration for enhancing cold tolerance. The function of EBR in cotton cotyledons was investigated in the control 0 mg/L (Cold+water) and 0.2 mg/L (Cold+EBR) treatments using RNA-Seq. A total of 4,001 differentially expressed genes (DEGs), including 2,591 up-regulated genes and 1,409 down-regulated genes were identified. Gene Ontology (GO) and biochemical pathway enrichment analyses showed that EBR is involved in the genetic information process, secondary metabolism, and also inhibits abscisic acid (ABA) and ethylene (ETH) signal transduction. In this study, physiological experiments showed that EBR can increase cold tolerance in cotton seedlings, and the comprehensive RNA-seq data shed light on the mechanisms through which EBR increases cold tolerance in cotton seedlings.


Assuntos
Brassinosteroides/metabolismo , Resposta ao Choque Frio/genética , Gossypium/genética , Esteroides Heterocíclicos/metabolismo , Brassinosteroides/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Gossypium/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma
8.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197292

RESUMO

Gossypium hirsutum L., is a widely cultivated cotton species around the world, but its production is seriously threatened by its susceptibility to chilling stress. Low temperature affects its germination, and the underlying molecular mechanisms are rarely known, particularly from a transcriptional perspective. In this study, transcriptomic profiles were analyzed and compared between two cotton varieties, the cold-tolerant variety KN27-3 and susceptible variety XLZ38. A total of 7535 differentially expressed genes (DEGs) were identified. Among them, the transcripts involved in energy metabolism were significantly enriched during germination based on analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as glycolysis/gluconeogenesis, tricarboxylic acid cycle (TCA cycle), and glyoxylate cycle (GAC). Results from further GO enrichment analysis show the earlier appearance of DNA integration, meristem growth, cotyledon morphogenesis, and other biological processes in KN27-3 compared with XLZ38 under chilling conditions. The synthesis of asparagine, GDP-mannose, and trehalose and the catabolic process of raffinose were activated. DEGs encoding antioxidants (spermidine) and antioxidase (CAT1, GPX4, DHAR2, and APX1) were much more up-regulated in embryos of KN27-3. The content of auxin (IAA), cis-zeatin riboside (cZR), and trans-zeatin riboside (tZR) in KN27-3 are higher than that in XLZ38 at five stages (from 12 h to 54 h). GA3 was expressed at a higher level in KN27-3 from 18 h to 54 h post imbibition compared to that in XLZ38. And abscisic acid (ABA) content of KN27-3 is lower than that in XLZ38 at five stages. Results from hormone content measurements and the related gene expression analysis indicated that IAA, CTK, and GA3 may promote germination of the cold-tolerant variety, while ABA inhibits it. These results expand the understanding of cottonseed germination and physiological regulations under chilling conditions by multiple pathways.


Assuntos
Resposta ao Choque Frio/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/fisiologia , Gossypium , Sementes , Transcriptoma/fisiologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/fisiologia , Gossypium/genética , Gossypium/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo
9.
BMC Plant Biol ; 19(1): 415, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590649

RESUMO

BACKGROUND: Appropriate plant architecture can improve the amount of cotton boll opening and allow increased planting density, thus increasing the level of cotton mechanical harvesting and cotton yields. The internodes of cotton fruiting branches are an important part of cotton plant architecture. Thus, studying the molecular mechanism of internode elongation in cotton fruiting branches is highly important. RESULTS: In this study, we selected internodes of cotton fruiting branches at three different stages from two cultivars whose internode lengths differed significantly. A total of 76,331 genes were detected by transcriptome sequencing. By KEGG pathway analysis, we found that DEGs were significantly enriched in the plant hormone signal transduction pathway. The transcriptional data and qRT-PCR results showed that members of the GH3 gene family, which are involved in auxin signal transduction, and CKX enzymes, which can reduce the level of CKs, were highly expressed in the cultivar XLZ77, which has relatively short internodes. Genes related to ethylene synthase (ACS), EIN2/3 and ERF in the ethylene signal transduction pathway and genes related to JAR1, COI1 and MYC2 in the JA signal transduction pathway were also highly expressed in XLZ77. Plant hormone determination results showed that the IAA and CK contents significantly decreased in cultivar XLZ77 compared with those in cultivar L28, while the ACC (the precursor of ethylene) and JA contents significantly increased. GO enrichment analysis revealed that the GO categories associated with promoting cell elongation, such as cell division, the cell cycle process and cell wall organization, were significantly enriched, and related genes were highly expressed in L28. However, genes related to the sphingolipid metabolic process and lignin biosynthetic process, whose expression can affect cell elongation, were highly expressed in XLZ77. In addition, 2067 TFs were differentially expressed. The WRKY, ERF and bHLH TF families were the top three largest families whose members were active in the two varieties, and the expression levels of most of the genes encoding these TFs were upregulated in XLZ77. CONCLUSIONS: Auxin and CK are positive regulators of internode elongation in cotton branches. In contrast, ethylene and JA may act as negative regulators of internode elongation in cotton branches. Furthermore, the WRKY, ERF and bHLH TFs were identified as important inhibitors of internode elongation in cotton. In XLZ77(a short-internode variety), the mass synthesis of ethylene and amino acid conjugation of auxin led to the inhibition of plant cell elongation, while an increase in JA content and degradation of CKs led to a slow rate of cell division, which eventually resulted in a phenotype that presented relatively short internodes on the fruiting branches. The results of this study not only provide gene resources for the genetic improvement of cotton plant architecture but also lay a foundation for improved understanding of the molecular mechanism of the internode elongation of cotton branches.


Assuntos
Frutas/genética , Perfilação da Expressão Gênica/métodos , Gossypium/genética , Regulação da Expressão Gênica de Plantas/genética
10.
Int J Mol Sci ; 20(16)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31404956

RESUMO

(1) Background: Upland cotton (Gossypium hirsutum L.) is the most important natural fiber worldwide, and it is extensively planted and plentifully used in the textile industry. Major cotton planting regions are frequently affected by abiotic stress, especially drought stress. Drought resistance is a complex, quantitative trait. A genome-wide association study (GWAS) constitutes an efficient method for dissecting the genetic architecture of complex traits. In this study, the drought resistance of a population of 316 upland cotton accessions was studied via GWAS. (2) Methods: GWAS methodology was employed to identify relationships between molecular markers or candidate genes and phenotypes of interest. (3) Results: A total of 8, 3, and 6 SNPs were associated with the euphylla wilting score (EWS), cotyledon wilting score (CWS), and leaf temperature (LT), respectively, based on a general linear model and a factored spectrally transformed linear mixed model. For these traits, 7 QTLs were found, of which 2 each were located on chromosomes A05, A11, and D03, and of which 1 was located on chromosome A01. Importantly, in the candidate regions WRKY70, GhCIPK6, SnRK2.6, and NET1A, which are involved in the response to abscisic acid (ABA), the mitogen-activated protein kinase (MAPK) signaling pathway and the calcium transduction pathway were identified in upland cotton at the seedling stage under drought stress according to annotation information and linkage disequilibrium (LD) block analysis. Moreover, RNA sequencing analysis showed that WRKY70, GhCIPK6, SnRK2.6, and NET1A were induced by drought stress, and the expression of these genes was significantly different between normal and drought stress conditions. (4) Conclusions: The present study should provide some genomic resources for drought resistance in upland cotton. Moreover, the germplasm of the different phenotypes, the detected SNPs and, the potential candidate genes will be helpful for molecular marker-assisted breeding studies about increased drought resistance in upland cotton.


Assuntos
Gossypium/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plântula/genética , Adaptação Fisiológica , Secas , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Gossypium/fisiologia , Desequilíbrio de Ligação , Plântula/fisiologia , Estresse Fisiológico
11.
BMC Plant Biol ; 19(1): 329, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337346

RESUMO

BACKGROUND: Zinc finger proteins (ZFPs) containing only a single zinc finger domain play important roles in the regulation of plant growth and development, as well as in biotic and abiotic stress responses. To date, the evolutionary history and functions of the ZFP gene family have not been identified in cotton. RESULTS: In this paper, we identified 29 ZFP genes in Gossypium hirsutum. This gene family was divided into seven subfamilies, 22 of which were distributed over 17 chromosomes. Bioinformatic analysis revealed that 20 GhZFP genes originated from whole genome duplications and two originated from dispersed duplication events, indicating that whole genome duplication is the main force in the expansion of the GhZFP gene family. Most GhZFP8 subfamily genes, except for GhZFP8-3, were highly expressed during fiber cell growth, and were induced by brassinosteroids in vitro. Furthermore, we found that a large number of GhZFP genes contained gibberellic acid responsive elements, auxin responsive elements, and E-box elements in their promoter regions. Exogenous application of these hormones significantly stimulated the expression of these genes. CONCLUSIONS: Our findings reveal that GhZFP8 genes are involved in cotton fiber development and widely induced by auxin, gibberellin and BR, which provides a foundation for the identification of more downstream genes with potential roles in phytohormone stimuli, and a basis for breeding better cotton varieties in the future.


Assuntos
Gossypium/genética , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Dedos de Zinco/genética , Brassinosteroides/metabolismo , Mapeamento Cromossômico , Sequência Conservada/genética , Giberelinas/fisiologia , Gossypium/fisiologia , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Transcriptoma , Dedos de Zinco/fisiologia
12.
New Phytol ; 224(2): 761-774, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111487

RESUMO

Root gravitropism is one of the most important processes allowing plant adaptation to the land environment. Auxin plays a central role in mediating root gravitropism, but how auxin contributes to gravitational perception and the subsequent response are still unclear. Here, we showed that the local auxin maximum/gradient within the root apex, which is generated by the PIN directional auxin transporters, regulates the expression of three key starch granule synthesis genes, SS4, PGM and ADG1, which in turn influence the accumulation of starch granules that serve as a statolith perceiving gravity. Moreover, using the cvxIAA-ccvTIR1 system, we also showed that TIR1-mediated auxin signaling is required for starch granule formation and gravitropic response within root tips. In addition, axr3 mutants showed reduced auxin-mediated starch granule accumulation and disruption of gravitropism within the root apex. Our results indicate that auxin-mediated statolith production relies on the TIR1/AFB-AXR3-mediated auxin signaling pathway. In summary, we propose a dual role for auxin in gravitropism: the regulation of both gravity perception and response.


Assuntos
Arabidopsis/fisiologia , Gravitropismo/fisiologia , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cinurenina/farmacologia , Amido/genética , Amido/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo
13.
Physiol Mol Biol Plants ; 24(5): 729-739, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150850

RESUMO

Leaf senescence is defined as a deterioration process that continues to the final developmental stage of leaf. This process is usually regulated by both external and internal factors. There are about 5356 senescence associated genes belonging to 44 plant species. A great number of these genes were identified in Arabidopsis. Leaf senescence can be regulated by many transcription factors. In this study, nine gene families were selected according to their expression levels during leaf senescence from our laboratory database. Phylogenetic tree was constructed by MEGA6. Cultivated cotton CCRI-10 seeds were sown in the experimental field of Institute of Cotton Research of CAAS for profiling and leaf development stages analysis. For abiotic (drought and salt) stress and phytohormone (ABA, SA, ET and JA) treatments, CCRI-10 seeds were sown in potting soil at 25 °C in a chamber room. Total RNA was isolated from various samples and the cDNA prepared for qRT-PCR. The comparative CT method was applied to calculate the relative expression levels of genes. For phylogenetic tree, nine cotton genes were divided into two groups, most of homologous genes in previous studies showed roles in phytohormones and abiotic stress. Expression profiling of the nine genes showed different patterns of tissue specific expression. In leaf development stages, majority of cotton genes showed high expression in early and complete senescence stage. Furthermore, most of cotton genes have positive or negative response to phytohormones and abiotic stress. Based on the results of this study, we found four cotton genes CotAD_07559, CotAD_37422, CotAD_21204 and CotAD_54353 as candidate genes for leaves senescence and abiotic stress.

14.
J Exp Bot ; 69(18): 4323-4337, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-29897556

RESUMO

Auxin signalling plays an essential role in regulating plant development. Auxin response factors (ARFs), which are critical components of auxin signalling, modulate the expression of early auxin-responsive genes by binding to auxin response factor elements (AuxREs). However, there has been no comprehensive characterization of this gene family in cotton. Here, we identified 56 GhARF genes in the assembled Gossypium hirsutum genome. This gene family was divided into 17 subfamilies, and 44 members of them were distributed across 21 chromosomes. GhARF6 and GhARF11 subfamily genes were predominantly expressed in vegetative tissues, whereas GhARF2 and GhARF18 subfamily genes were highly expressed during seed fibre cell initiation. GhARF2-1 and GhARF18-1 were exclusively expressed in trichomes, organs similar to cotton seed fibre cells, and overexpression of these genes in Arabidopsis enhances trichome initiation. Comparative transcriptome analysis combined with AuxRE prediction revealed 11 transcription factors as potential target genes of GhARF2 and GhARF18. Six of these genes were significantly expressed during seed fibre cell initiation and were bound by GhARF2-1 and GhARF18-1 in yeast one-hybrid assays. Our results suggest that GhARF2 and GhARF18 genes may be key regulators of cotton seed fibre initiation by regulating the expression of several transcription factor genes. This study deepens our understanding of auxin-mediated initiation of cotton seed fibre cells and helps us in breeding better cotton varieties in the future.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Filogenia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
15.
J Plant Physiol ; 224-225: 30-48, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29597066

RESUMO

The objective of this study was to investigate the root growth compensatory effects and cotton yield under drought stress. The results indicate that the root dry weight, boll weight, and cotton yield increased in both the drought-resistant cultivar (CCRI-45) and the drought-sensitive cultivar (CCRI-60). Compensation effects were exhibited under the three-day drought stress treatment at a soil relative water content (SRWC) of 60% and 45% during the seedling stage, and flowering and boll-forming stage over two years. The yield of the drought-resistant cultivar (CCRI-45) was higher than the control, however, following the six-day 45% SRWC drought treatments, the yield of the drought-sensitive cultivar (CCRI-60) was lower than the control. The soluble sugar content, proline content, superoxide dismutase (SOD) activity, and peroxidase (POD) activity of the roots increased under drought stress and then decreased after re-watering, although the values remained higher than those of the controls for a short period. These physiological measures may represent stress reactions and thus may not indicate factors that result in compensation effects. However, catalase (CAT) activity and gibberellic acid (GA) content of the roots decreased under drought stress. After re-watering, the CAT activity and the GA content increased and were significantly higher than those of the controls under the six-day 60% SRWC and 45% SRWC drought treatments. The abscisic acid (ABA) content of the roots increased under drought stress. After re-watering, the ABA content decreased to a lower level under the three and six-day 60% SRWC and 45% SRWC drought treatments than in the controls. According to an analysis of various indicators, the interaction between ABA and GA signals may play an important role in root growth compensatory effects. In summary, the results demonstrate that moderate drought stress is beneficial to root growth and yield. This conclusion is of great significance to improving our understanding of the maximum utilization of limited water resources.


Assuntos
Secas , Gossypium/fisiologia , Raízes de Plantas/fisiologia , Gossypium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico
16.
Mol Genet Genomics ; 293(4): 831-843, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29423657

RESUMO

Gossypium hirsutum L. is the most important fiber crop worldwide and contributes to more than 95% of global cotton production. Marker-assisted selection (MAS) is an effective approach for improving fiber quality, and quantitative trait loci (QTL) mapping of fiber quality traits is important for cotton breeding. In this study, a permanent intra-specific recombinant inbred line (RIL) population containing 137 families was used for fiber quality testing. Based on a previously reported high-density genetic map with an average marker distance of 0.63 cM, 186 additive QTLs were obtained for five fiber quality traits over five consecutive years, including 39 for fiber length (FL), 36 for fiber strength (FS), 50 for fiber uniformity (FU), 33 for micronaire (MC) and 28 for fiber elongation (FE). Three stable QTLs, qMC-A4-1, qMC-D2-3 and qFS-D9-1, were detected in four datasets, and another eight stable QTLs, qMC-A4-2, qMC-D11-2, qFU-A9-1, qFU-A10-4, qFS-D11-1, qFL-D9-2, qFL-D11-1 and qFE-A3-2, were detected in three datasets. The annotated genes in these 11 stable QTLs were collected, and these genes included many transcription factors with functions during fiber development. 33 QTL coincidence regions were found, and these involved nearly half of the total QTLs. Four chromosome regions containing at least 6 QTLs were promising for fine mapping. In addition, 41 pairs of epistatic QTLs (e-QTLs) were screened, including 6 for FL, 30 for FS, 2 for FU and 3 for MC. The identification of stable QTLs adds valuable information for further QTL fine mapping and gene positional cloning for fiber quality genetic detection and provides useful markers for further molecular breeding in enhancing fiber quality.


Assuntos
Mapeamento Cromossômico , Fibra de Algodão , Gossypium/genética , Endogamia , Locos de Características Quantitativas , Gossypium/metabolismo
17.
PLoS One ; 12(10): e0185550, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981538

RESUMO

Plant population density (PPD) and nitrogen (N) application rate (NAR) are two controllable factors in cotton production. We conducted field experiments to investigate the effects of PPD, NAR and their interaction (PPD × NAR) on yield, N uptake and N use efficiency (NUE) of cotton using a split-plot design in the North China Plain during 2013 and 2014. The main plots were PPDs (plants m-2) of 3.00 (low), 5.25 (medium) and 7.50 (high) and the subplots were NARs of 0 (N-free), 112.5 (low), 225.0 (moderate) and 337.5 (high). During both 2013 and 2014, biological yield and N uptake of cotton increased significantly, but harvesting index decreased significantly with NAR and PPD increasing. With NAR increasing, internal nitrogen use efficiency(NUE) decreased significantly under three PPDs and agronomical NUE, physiologilal NUE, nitrogen recovery efficiency(NRE) and partial factor productivity from applied nitrogen (PFPN) also decreased significantly under high PPD between two years. Lint yield increment varied during different PPDs and years, but NAR enhancement showed less function under higher PPD than lower PPD in general. Taken together, moderate NAR under medium PPD combined higher lint yield with higher agronomic NUE, physiological NUE, and NRE, while low NAR with high PPD would achieve a comparable yield with superior NRE and PFPN and high NAR under high PPD and medium PPD produced higher biological yield but lower harvest index, lint yield and NUE compared to moderate NAR with medium PPD. Our overall results indicated that, in this region, increasing PPD and decreasing NAR properly would enhance both lint yield and NUE of cotton.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Gossypium/crescimento & desenvolvimento , Nitrogênio/administração & dosagem , China
18.
Front Plant Sci ; 8: 1657, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993786

RESUMO

Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.

19.
Int J Mol Sci ; 18(9)2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28926933

RESUMO

Premature leaf senescence occurs in the ultimate phase of the plant, and it occurs through a complex series of actions regulated by stress, hormones and genes. In this study, a proteomic analysis was performed to analyze the factors that could induce premature leaf senescence in two cotton cultivars. We successfully identified 443 differential abundant proteins (DAPs) from 7388 high-confidence proteins at four stages between non-premature senescence (NS) and premature senescence (PS), among which 158 proteins were over-accumulated, 238 proteins were down-accumulated at four stages, and 47 proteins displayed overlapped accumulation. All the DAPs were mapped onto 21 different categories on the basis of a Clusters of Orthologous Groups (COG) analysis, and 9 clusters were based on accumulation. Gene Ontology (GO) enrichment results show that processes related to stress responses, including responses to cold temperatures and responses to hormones, are significantly differentially accumulated. More importantly, the enriched proteins were mapped in The Arabidopsis Information Resource (TAIR), showing that 58 proteins play an active role in abiotic stress, hormone signaling and leaf senescence. Among these proteins, 26 cold-responsive proteins (CRPs) are significantly differentially accumulated. The meteorological data showed that the median temperatures declined at approximately 15 days before the onset of aging, suggesting that a decrease in temperature is tightly linked to an onset of cotton leaf senescence. Because accumulations of H2O2 and increased jasmonic acid (JA) were detected during PS, we speculate that two pathways associated with JA and H2O2 are closely related to premature leaf senescence in cotton.


Assuntos
Resposta ao Choque Frio , Gossypium/genética , Proteínas de Plantas/genética , Proteoma/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo
20.
PLoS One ; 12(8): e0182918, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809947

RESUMO

Due to China's rapidly increasing population, the total arable land area has dramatically decreased; as a consequence, the competition for farming land allocated for grain and cotton production has become fierce. Therefore, to overcome the existing contradiction between cotton grain and fiber production and the limited farming land, development of early-maturing cultivars is necessary. In this research, a high-density linkage map of upland cotton was constructed using genotyping by sequencing (GBS) to discover single nucleotide polymorphism (SNP) markers associated with early maturity in 170 F2 individuals derived from a cross between LU28 and ZHONG213. The high-density genetic map, which was composed of 3978 SNP markers across the 26 cotton chromosomes, spanned 2480 cM with an average genetic distance of 0.62 cM. Collinearity analysis showed that the genetic map was of high quality and accurate and agreed well with the Gossypium hirsutum reference genome. Based on this high-density linkage map, QTL analysis was performed on cotton early-maturity traits, including FT, FBP, WGP, NFFB, HNFFB and PH. A total 47 QTLs for the six traits were detected; each of these QTLs explained between 2.61% and 32.57% of the observed phenotypic variation. A major region controlling early-maturity traits in Gossypium hirsutum was identified for FT, FBP, WGP, NFFB and HNFFB on chromosome D03. QTL analyses revealed that phenotypic variation explained (PVE) ranged from 10.42% to 32.57%. Two potential candidate genes, Gh_D03G0885 and Gh_D03G0922, were predicted in a stable QTL region and had higher expression levels in the early-maturity variety ZHONG213 than in the late-maturity variety LU28. However, further evidence is required for functional validation. This study could provide useful information for the dissection of early-maturity traits and guide valuable genetic loci for molecular-assisted selection (MAS) in cotton breeding.


Assuntos
Mapeamento Cromossômico , Gossypium/genética , Locos de Características Quantitativas/genética , Cruzamento , Genoma de Planta/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA