Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910203

RESUMO

Instrumented mouthguard systems (iMGs) are commonly used to study rigid body head kinematics across a variety of athletic environments. Previous work has found good fidelity for iMGs rigidly fixed to anthropomorphic test device (ATD) headforms when compared to reference systems, but few validation studies have focused on iMG performance in human cadaver heads. Here, we examine the performance of two boil-and-bite style iMGs in helmeted cadaver heads. Three unembalmed human cadaver heads were fitted with two instrumented boil-and-bite mouthguards [Prevent Biometrics and Diversified Technical Systems (DTS)] per manufacturer instructions. Reference sensors were rigidly fixed to each specimen. Specimens were fitted with a Riddell SpeedFlex American football helmet and impacted with a rigid impactor at three velocities and locations. All impact kinematics were compared at the head center of gravity. The Prevent iMG performed comparably to the reference system up to ~ 60 g in linear acceleration, but overall had poor correlation (CCC = 0.39). Prevent iMG angular velocity and BrIC generally well correlated with the reference, while underestimating HIC and overestimating HIC duration. The DTS iMG consistently overestimated the reference across all measures, with linear acceleration error ranging from 10 to 66%, and angular acceleration errors greater than 300%. Neither iMG demonstrated consistent agreement with the reference system. While iMG validation efforts have utilized ATD testing, this study highlights the need for cadaver testing and validation of devices intended for use in-vivo, particularly when considering realistic (non-idealized) sensor-skull coupling, when accounting for interactions with the mandible and when subject-specific anatomy may affect device performance.

2.
Aerosp Med Hum Perform ; 94(11): 827-834, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853598

RESUMO

INTRODUCTION: Military personnel extensively use night vision goggles (NVGs) in contemporary scenarios. Since NVGs may induce or increase injuries from falls or vehicular accidents, biomechanical risk assessments would aid design goal or mitigation strategy development.METHODS: This study assesses injury risks from NVG impact on cadaver heads using impactors modeled on the PVS-14 NVG. Impacts to the zygoma and maxilla were performed at 20° or 40° angles. Risks of facial fracture, neurotrauma, and neck injury were assessed. Acoustic sensors and accelerometers assessed time of fracture and provided input variables for injury risk functions. Injuries were assessed using the Abbreviated Injury Scale (AIS); injury severity was assessed using the Rhee and Donat scales. Risk functions were developed for the input variables using censored survival analyses.RESULTS: The effects of impact angle and bone geometry on injury characteristics were determined with loading area, axial force, energy attenuation, and stress at fracture. Probabilities of facial fracture were quantified through survival analysis and injury risk functions. These risk functions determined a 50% risk of facial bone fracture at 1148 N (axial force) at a 20° maxillary impact, 588 N at a 40° maxillary impact, and 677 N at a 20° zygomatic impact. A cumulative distribution function indicates 769 N corresponds to 50% risk of fracture overall.DISCUSSION: Results found smaller impact areas on the maxilla are correlated with higher angles of impact increasing risk of facial fracture, neck injuries are unlikely to occur before fracture or neurotrauma, and a potential trade-off mechanism between fracture and brain injury.Davis MB, Pang DY, Herring IP, Bass CR. Facial fracture injury criteria from night vision goggle impact. Aerosp Med Hum Perform. 2023; 94(11):827-834.


Assuntos
Fraturas Ósseas , Visão Noturna , Humanos , Dispositivos de Proteção dos Olhos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...