Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(11): 110941, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705042

RESUMO

Endoplasmic reticulum (ER) homeostasis is essential for plants to manage responses under environmental stress. Plant immune activation requires the ER, but how ER homeostasis is associated with plant immune activation is largely unexplored. Here we find that transcription of an HVA22 family gene, OsHLP1 (HVA22-like protein 1), is induced by Magnaporthe oryzae infection. Overexpression of OsHLP1 significantly enhances blast disease resistance but impairs ER morphology in rice (Oryza sativa), resulting in enhanced sensitivity to ER stress. OsHLP1 interacts with the NAC (NAM, ATAF, and CUC) transcription factor OsNTL6 at the ER. OsNTL6 localizes to the ER and is relocated to the nucleus after cleavage of the transmembrane domain. OsHLP1 suppresses OsNTL6 protein accumulation, whereas OsNTL6 counteracts OsHLP1 by alleviating sensitivity to ER stress and decreasing disease resistance in OsHLP1 overexpression plants. These findings unravel a mechanism whereby OsHLP1 promotes disease resistance by compromising ER homeostasis when plants are infected by pathogens.


Assuntos
Magnaporthe , Oryza , Resistência à Doença , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/genética , Oryza/metabolismo , Doenças das Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 12(1): 2178, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846336

RESUMO

Many phytopathogens secrete cell wall degradation enzymes (CWDEs) to damage host cells and facilitate colonization. As the major components of the plant cell wall, cellulose and hemicellulose are the targets of CWDEs. Damaged plant cells often release damage-associated molecular patterns (DAMPs) to trigger plant immune responses. Here, we establish that the fungal pathogen Magnaporthe oryzae secretes the endoglucanases MoCel12A and MoCel12B during infection of rice (Oryza sativa). These endoglucanases target hemicellulose of the rice cell wall and release two specific oligosaccharides, namely the trisaccharide 31-ß-D-Cellobiosyl-glucose and the tetrasaccharide 31-ß-D-Cellotriosyl-glucose. 31-ß-D-Cellobiosyl-glucose and 31-ß-D-Cellotriosyl-glucose bind the immune receptor OsCERK1 but not the chitin binding protein OsCEBiP. However, they induce the dimerization of OsCERK1 and OsCEBiP. In addition, these Poaceae cell wall-specific oligosaccharides trigger a burst of reactive oxygen species (ROS) that is largely compromised in oscerk1 and oscebip mutants. We conclude that 31-ß-D-Cellobiosyl-glucose and 31-ß-D-Cellotriosyl-glucose are specific DAMPs released from the hemicellulose of rice cell wall, which are perceived by an OsCERK1 and OsCEBiP immune complex during M. oryzae infection in rice.


Assuntos
Ascomicetos/fisiologia , Parede Celular/metabolismo , Oligossacarídeos/metabolismo , Oryza/imunologia , Oryza/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Celulase/metabolismo , Resistência à Doença , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Transcrição Gênica
4.
J Integr Plant Biol ; 62(10): 1552-1573, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32129570

RESUMO

Crosstalk between plant hormone signaling pathways is vital for controlling the immune response during pathogen invasion. Salicylic acid (SA) and jasmonic acid (JA) often play important but antagonistic roles in the immune responses of higher plants. Here, we identify a basic helix-loop-helix transcription activator, OsbHLH6, which confers disease resistance in rice by regulating SA and JA signaling via nucleo-cytosolic trafficking in rice (Oryza sativa). OsbHLH6 expression was upregulated during Magnaporthe oryzae infection. Transgenic rice plants overexpressing OsbHLH6 display increased JA responsive gene expression and enhanced disease susceptibility to the pathogen. Nucleus-localized OsbHLH6 activates JA signaling and suppresses SA signaling; however, the SA regulator OsNPR1 (Nonexpressor of PR genes 1) sequesters OsbHLH6 in the cytosol to alleviate its effect. Our data suggest that OsbHLH6 controls disease resistance by dynamically regulating SA and JA signaling.


Assuntos
Citosol/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
5.
Plant Cell ; 31(1): 172-188, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610168

RESUMO

To defend against pathogens, plants have developed complex immune systems, including plasma membrane receptors that recognize pathogen-associated molecular patterns, such as chitin from fungal cell walls, and mount a defense response. Here, we identify a chitinase, MoChia1 (Magnaporthe oryzae chitinase 1), secreted by M. oryzae, a fungal pathogen of rice (Oryza sativa). MoChia1 can trigger plant defense responses, and expression of MoChia1 under an inducible promoter in rice enhances its resistance to M. oryzae MoChia1 is a functional chitinase required for M. oryzae growth and development; knocking out MoChia1 significantly reduced the virulence of the fungus, and we found that MoChia1 binds chitin to suppress the chitin-triggered plant immune response. However, the rice tetratricopeptide repeat protein OsTPR1 interacts with MoChia1 in the rice apoplast. OsTPR1 competitively binds MoChia1, thereby allowing the accumulation of free chitin and re-establishing the immune response. Overexpressing OsTPR1 in rice plants resulted in elevated levels of reactive oxygen species during M. oryzae infection. Our data demonstrate that rice plants not only recognize MoChia1, but also use OsTPR to counteract the function of this fungal chitinase and regain immunity.


Assuntos
Magnaporthe/patogenicidade , Oryza/metabolismo , Quitinases/genética , Quitinases/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Agric Food Chem ; 66(45): 11990-11999, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30398356

RESUMO

RNA interference (RNAi) has been developed for plant pest control. In this study, hairpin-type double-stranded RNA (dsRNA) targeting the juvenile hormone (JH) acid methyltransferase ( JHAMT) gene ( dsJHAMT) was introduced in potato plants via Agrobacterium-mediated transformation. The results indicated that the transcriptional RNA of dsJHAMT accumulated in the transgenic plants. The transcripts and proteins of the L. decemlineata JHAMT gene were significantly reduced in larvae feeding on dsJHAMT transgenic foliage. The dsJHAMT had a significant negative effect on the growth and development of L. decemlineata, especially resulting in less oviposition. Importantly, in the field trials, transgenic plants are high-efficiently protected from insect damage mainly because surviving insects laid fewer or no eggs. Even full protection from beetle damage can be acquired by continuously lowering insect population size at large scale in the field over the years. Therefore, the transgenic plants expressing dsJHAMT successfully provided an additional option for plant pest control.


Assuntos
Besouros/metabolismo , Hormônios Juvenis/biossíntese , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas/parasitologia , RNA de Cadeia Dupla/genética , Solanum tuberosum/parasitologia , Animais , Besouros/genética , Besouros/crescimento & desenvolvimento , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Hormônios Juvenis/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Controle Biológico de Vetores , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(10): 2520-2525, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463697

RESUMO

The phytohormone ethylene regulates many aspects of plant growth and development. EIN2 is the central regulator of ethylene signaling, and its turnover is crucial for triggering ethylene responses. Here, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-response mutant mhz3. Loss-of-function mutations lead to ethylene insensitivity in etiolated rice seedlings. MHZ3 encodes a previously uncharacterized membrane protein localized to the endoplasmic reticulum. Ethylene induces MHZ3 gene and protein expression. Genetically, MHZ3 acts at the OsEIN2 level in the signaling pathway. MHZ3 physically interacts with OsEIN2, and both the N- and C-termini of MHZ3 specifically associate with the OsEIN2 Nramp-like domain. Loss of mhz3 function reduces OsEIN2 abundance and attenuates ethylene-induced OsEIN2 accumulation, whereas MHZ3 overexpression elevates the abundance of both wild-type and mutated OsEIN2 proteins, suggesting that MHZ3 is required for proper accumulation of OsEIN2 protein. The association of MHZ3 with the Nramp-like domain is crucial for OsEIN2 accumulation, demonstrating the significance of the OsEIN2 transmembrane domains in ethylene signaling. Moreover, MHZ3 negatively modulates OsEIN2 ubiquitination, protecting OsEIN2 from proteasome-mediated degradation. Together, these results suggest that ethylene-induced MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like domain and impeding protein ubiquitination to facilitate ethylene signal transduction. Our findings provide insight into the mechanisms of ethylene signaling.


Assuntos
Proteínas de Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Etilenos/metabolismo , Estiolamento , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Domínios Proteicos , Plântula/genética , Plântula/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
8.
Plant J ; 80(6): 1118-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25353370

RESUMO

Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Apoptose , Diterpenos do Tipo Caurano/metabolismo , Germinação , Modelos Biológicos , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/fisiologia , Dedos de Zinco
9.
PLoS One ; 8(9): e73211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023833

RESUMO

Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.


Assuntos
Agrobacterium/genética , Inativação Gênica , Genes de Plantas/genética , Engenharia Genética/métodos , Gossypium/genética , Vírus de Plantas/genética , Marcadores Genéticos/genética , Vetores Genéticos/genética , Proantocianidinas/metabolismo , Transformação Genética
10.
Pest Manag Sci ; 68(12): 1595-604, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22807197

RESUMO

BACKGROUND: The Colorado potato beetle (CPB), Leptinotarsa decemlineata Say, is a destructive pest. The CPB is a quarantine pest in China, but has now invaded the Xinjiang Uygur Autonomous Region and is continuing to spread eastwards. To control the damage and overspreading, transgenic potato plants expressing Cry3A toxin were developed, and their resistance to CPB was evaluated by bioassays in the laboratory and field in 2009, 2010 and 2011. RESULTS: The insect resistance of the high-dose (HD) transgenic lines was significantly greater than the middle-dose (MD) and low-dose (LD) transgenic lines regarding leaf consumption, biomass accumulation and mortality. The HD and MD transgenic lines showed 100% mortality when inoculated with first- and second-instar larvae; however, the LD transgenic lines showed about 50% mortality. The HD transgenic lines exhibited a significantly higher yield than the MD and LD transgenic lines owing to their high CPB resistance. CONCLUSION: Commercially available transgenic potato plants with above 0.1% Cry3A of total soluble protein and NT control refugia could control damage, delay adaptation and halt dispersion eastwards. The two HD transgenic lines developed in this study, PAH1 and PAH2, are ideal for use as cultivars or germplasm to breed new cultivars.


Assuntos
Proteínas de Bactérias/metabolismo , Besouros , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/genética , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Agentes de Controle Biológico , Endotoxinas/química , Endotoxinas/genética , Comportamento Alimentar , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Dados de Sequência Molecular , Controle de Pragas/métodos , Solanum tuberosum/metabolismo
11.
Planta ; 235(1): 25-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21805151

RESUMO

Pyruvate kinase (PK) catalyzes the final step of glycolysis. There are few reports on the role of PK in rice. Here, we identified a novel rice dwarf mutant, designated as ospk1, showing dwarfism, panicle enclosure, reduced seed set, and outgrowth of axillary buds from culm nodes. Sequence analyses of 5'-RACE indicated that a single T-DNA was inserted in the transcriptional regulatory region of OsPK1 in ospk1. Quantitative RT-PCR result showed that OsPK1 expression was decreased by approximately 90% in ospk1 compared with that in WT. Enzyme assay and transient expression in protoplasts indicated that OsPK1 encodes a cytosolic PK (PK(c)). Complementation with OsPK1 demonstrated that OsPK1 is responsible for the phenotype of ospk1. Quantitative RT-PCR and GUS staining analyses exhibited that OsPK1 was expressed mainly in leaf mesophyll cells, phloem companion cells in stems, and cortical parenchyma cells in roots. The transcriptions of four other putative enzymes involved in the glycolysis/gluconeogenesis pathway were altered in ospk1. The amount of pyruvate is decreased in ospk1. We propose that OsPK1 plays an important role through affecting the glycolytic pathway. The contents of glucose and fructose were markedly accumulated in flag leaf blade and panicle of ospk1. The sucrose level in panicle of ospk1 was decreased by approximately 84%. These findings indicated that both monosaccharide metabolism and sugar transport are altered due to the decreased expression of OsPK1. Together, these results provide new insights into the role of PK(c) in plant morphological development, especially plant height.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/genética , Piruvato Quinase/genética , Sequência de Aminoácidos , Sequência de Bases , Citosol/química , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Gluconeogênese/genética , Glucose/metabolismo , Glicólise/genética , Dados de Sequência Molecular , Mutagênese Insercional , Oryza/metabolismo , Fenótipo , Protoplastos/metabolismo , Piruvato Quinase/metabolismo , Sacarose/metabolismo , Transcrição Gênica
12.
Plant Mol Biol ; 65(4): 357-71, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17929174

RESUMO

The latest report has estimated the number of rice genes to be approximately 32,000. To elucidate the functions of a large population of rice genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the Full-length cDNA Over-eXpresser (FOX) gene-hunting system. This system is very useful for analyzing various gain-of-function phenotypes from large populations of transgenic plants overexpressing cDNAs of interest and others with unknown or important functions. We collected the plasmid DNAs of 13,980 independent full-length cDNA (FL-cDNA) clones to produce a FOX library by placing individual cDNAs under the control of the maize Ubiquitin-1 promoter. The FOX library was transformed into rice by Agrobacterium-mediated high-speed transformation. So far, we have generated approximately 12,000 FOX-rice lines. Genomic PCR analysis indicated that the average number of FL-cDNAs introduced into individual lines was 1.04. Sequencing analysis of the PCR fragments carrying FL-cDNAs from 8615 FOX-rice lines identified FL-cDNAs in 8225 lines, and a database search classified the cDNAs into 5462 independent ones. Approximately 16.6% of FOX-rice lines examined showed altered growth or morphological characteristics. Three super-dwarf mutants overexpressed a novel gibberellin 2-oxidase gene,confirming the importance of this system. We also show here the other morphological alterations caused by individual FL-cDNA expression. These dominant phenotypes should be valuable indicators for gene discovery and functional analysis.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma de Planta , Oryza/genética , Sequência de Bases , Primers do DNA , DNA Complementar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA