Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(32): 13420-13427, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37547928

RESUMO

The lack of macroscopic magnetic moments makes antiferromagnetic materials promising candidates for high-speed spintronic devices. The 2D ternary V-based chalcogenides (VXYSe4; X, Y = Al, Ga) monolayers are investigated based on the density-functional theory and Monte Carlo simulations. The results reveal that the Néel temperature of the VGa2Se4 monolayer is 18 K with zigzag2-antiferromagnetic (AFM) spin ordering. Also, the magnetic ordering of V ions in VAl2Se4 and VAlGaSe4 monolayers prefer zigzag1-AFM coupling with Néel temperature of 47 K and 33 K, respectively. The magnetic anisotropy calculations demonstrate that the easy magnetization axis of the VXYSe4 monolayers is parallel to the y axis. In addition, the VXYSe4 monolayers can be adjusted from the AFM state to the ferromagnetic (FM) state under biaxial stretching, which can be attributed to the competition between d-p-d superexchange and d-d direct exchange caused by the variation of bond length. The transition temperature of VXYSe4 monolayers can be elevated above room temperature with the help of compression strain. In particular, the in-plane magnetic anisotropy is a robust characteristic regardless of the magnitude of the applied biaxial strain. These explorations not only enrich the family of AFM monolayers with excellent stability but also provide distinctive ideas for the performance control of AFM materials and their applications in nanodevices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36774641

RESUMO

The breaking of the out-of-plane symmetry makes a two-dimensional (2D) Janus monolayer a new platform to explore the coupling between ferroelectricity and ferromagnetism. Using density functional theory in combination with Monte Carlo simulations, we report a novel phase-switchable 2D multiferroic material VInSe3 with large intrinsic out-of-plane spontaneous electric polarization and a high Curie temperature (Tc). The structural transition energy barrier between the two phases is determined to be 0.4 eV, indicating the switchability of the electric polarizations and the potential ferroelectricity. Carrier doping can boost the Curie temperature above room temperature, attributing to the enhanced magnetic exchange interaction. A transition from the ferromagnetic (FM) state to the antiferromagnetic (AFM) state can be induced by carrier doping in octahedra-VInSe3, while FM coupling is well-preserved in tetrahedron-VInSe3, which can be regulated to be either an XY or Ising magnet at an appropriate carrier concentration. These findings not only enrich the family of high-Tc low-dimensional monolayers but also offer a new direction for the design and multifunctional application of multiferroic materials.

3.
Nanoscale ; 14(38): 14231-14239, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36128830

RESUMO

Two-dimensional (2D) ferro-type materials have received great attention owing to the remarkable polarization effect in optoelectronics and spintronics. Using the first-principles method, the coupling between ferromagnetism and ferroelectricity is investigated in a multiferroic Janus 1T-FeSSe monolayer, which has a strong Stoner ferromagnetic ground state. The magnetic anisotropy energy (MAE) is apparently impacted by the out-of-plane asymmetry donated ferroelectricity, which is reflected by the asymmetry of the Z-MAE image. The easy magnetization axis of Janus FeSSe is the +y axis with a large MAE of 0.59 meV, rooting in unpaired d electrons of Fe atoms. The transformation of band splitting and Fermi surface can be effectively engineered by different magnetic polarization directions. The ferromagnetic (FM) coupling of the FeSSe monolayer is very robust under external strain within the range of -6% to 6%, while the strength of magnetic moment of Fe atoms and polarization are easily strain-engineered, the intrinsic mechanism of which can be elaborated by the GKA rules that depend on angles and distances. This multiferroic FeSSe monolayer provides a new platform for exploring the coupling of 2D ferromagnetism and ferroelectricity and designing low-dimensional multiferroic electronics.

4.
Sci Rep ; 10(1): 17213, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057058

RESUMO

By first-principles calculations, we investigate the geometric stability, electronic and optical properties of the type-II PN-WSe2 and type-I PAs-WSe2 van der Waals heterostructures(vdWH). They are p-type semiconductors with indirect band gaps of 1.09 eV and 1.08 eV based on PBE functional respectively. By applying the external gate field, the PAs-WSe2 heterostructure would transform to the type-II band alignment from the type-I. With the increasing of magnitude of the electric field, two heterostructures turn into the n-type semiconductors and eventually into metal. Especially, PN/PAs-WSe2 vdWH are both high refractive index materials at low frequencies and show negative refractive index at high frequencies. Because of the steady absorption in ultraviolet region, the PAs-WSe2 heterostructure is a highly sensitive UV detector material with wide spectrum. The type-II PN-WSe2 heterostructure possesses giant and broadband absorption in the near-infrared and visible regions, and its solar power conversion efficiency of 13.8% is higher than the reported GaTe-InSe (9.1%), MoS2/p-Si (5.23%) and organic solar cells (11.7%). It does project PN-WSe2 heterostructure a potential for application in excitons-based solar cells.

5.
Phys Chem Chem Phys ; 22(37): 21412-21420, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32940302

RESUMO

Using the density functional theory (DFT) calculations, we find that  Janus group-III chalcogenide monolayers can serve as a suitable substrate for silicene, and the Dirac electron band properties of silicene are also fully preserved. The maximum opened band gap can reach 179 meV at the Dirac point due to the interaction of silicene and the polar two-dimensional (2D) substrate. In addition, the electronic band structure of the heterostructure can be modulated by applying an electric field where its predicted band gap increases or decreases according to the direction of the applied external electric field. Furthermore, an insight into the electron structures can be understood by analyzing the electron energy-loss (EEL) spectra. From these results, we also predict that heterostructures with polar 2D substrates have broad application prospects in multi-functional devices. Besides, Janus group-III chalcogenide monolayers can be used as good substrates for growing silicene and the modulation of the electronic structure can also be applied to nanodevices and optoelectronic devices.

6.
ACS Omega ; 5(28): 17207-17214, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715206

RESUMO

Group IV monochalcogenides exhibit spontaneous polarization and ferroelectricity, which are important in photovoltaic materials. Since strain engineering plays an important role in ferroelectricity, in the present work, the effect of equibiaxial strain on the band structure and shift currents in monolayer two-dimensional (2D) GeS and SnS has systematically been investigated using the first-principles calculations. The conduction bands of those materials are more responsive to strain than the valence bands. Increased equibiaxial compressive strain leads to a drastic reduction in the band gap and finally the occurrence of phase transition from semiconductor to metal at strains of -15 and -14% for GeS and SnS, respectively. On the other hand, tensile equibiaxial strain increases the band gap slightly. Similarly, increased equibiaxial compressive strain leads to a steady almost four times increase in the shift currents at a strain of -12% with direction change occurring at -8% strain. However, at phase transition from semiconductor to metal, the shift currents of the two materials completely vanish. Equibiaxial tensile strain also leads to increased shift currents. For SnS, shift currents do not change direction, just as the case of GeS at low strain; however, at a strain of +8% and beyond, direction reversal of shift currents beyond the band gap in GeS occur.

7.
J Phys Chem Lett ; 10(24): 7842-7849, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31779311

RESUMO

In the theory of ligand fields, depending on the nature and field strength of the surrounding ligands, the central metal ion may exhibit different electronic configurations, low spin (LS) or high spin (HS). Realizing stable spin polarization is one of the main challenges in the field of molecular spintronic devices because of spin switching triggered by an external stimulus. Here, an asymmetric homobimetallic complex has been investigated using the nonequilibrium Green's function and spin density functional theory. Our calculations indicate that the homobimetallic complex can achieve negative differential resistance, rectification effect, and perfect spin filtering transport on the level of an individual molecule. Strikingly, when the molecule is stretched by 0.45 Å, the HS state is still the most stable because of the weak magnetic Ni-Ni interaction. Although its conductivity decreases by 30%, the efficiency of spin filtering remains 100%. These obtained theoretical findings suggest that the homobimetallic complexes hold great potential in molecular spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...