Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 38(1): 134-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644832

RESUMO

The purpose of this study was to investigate the effects of secreted protein acidic and rich in cysteine (SPARC) on the maintenance of limbal epithelial stem cell (LESC) stemness and restoration of ocular surface. To determine the suitable concentration of SPARC for LESC culture, the marker expression, mitogenic effect, and holoclone-forming capacity of LESCs treated with different concentrations of SPARC were analyzed. To investigate the mechanism of SPARC's action on the preservation of LESCs stemness, the phosphorylation of related signaling pathways was evaluated by Western blotting. A corneal wound model was established to verify the function of SPARC in ocular surface repair. Consecutive subculturing, colony-forming efficiency, immunofluorescence, and 5-ethynyl-2-deoxyuridine incorporation assays indicated that 1 µg/mL SPARC was a suitable concentration to stimulate LESC proliferation and preserve their proliferative potential. Compared with a control group, 1 µg/mL SPARC effectively increased the expression of ABCG-2, Bmi-1, and Ki67, while decreasing that of CK3/12. The mitogenic effect of SPARC on LESCs was found to be mediated by the phosphorylation of c-Jun N-terminal kinase (JNK) and p38-MAPK signaling pathways, whereas the inhibitors of JNK and p38 MAPK reduced the marker expression and mitogenic capacity of LESCs. In a corneal injury model, SPARC facilitated corneal epithelial wound healing and promoted the proliferation of p63α-positive cells both in the limbus and in the epithelial healing front. SPARC promotes proliferation while suppressing spontaneous differentiation of LESCs through JNK and p38-MAPK signaling pathways, suggesting that SPARC is a promising factor for the improvement of LESCs culture in vitro and in vivo.


Assuntos
Células Epiteliais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Limbo da Córnea/metabolismo , Osteonectina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/citologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Coelhos
2.
Int J Ophthalmol ; 12(3): 351-362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918800

RESUMO

AIM: To construct functional human full-thickness corneal replacements. METHODS: Acellular porcine corneal matrix (APCM) was developed from porcine cornea by decellulariztion. The biomechanical properties of anterior-APCM (AAPCM) and posterior-APCM (PAPCM) were checked using uniaxial tensile testing. Human corneal cells were obtained by cell culture. Suspending ring was designed by deformation of an acupuncture needle. MTT cytotoxicity assay was used to check the cytotoxicity of suspending ring soaking solutions. A new three-dimensional organ culture system was established by combination of suspending ring, 48-well plate and medium together. A human full-thickness corneal substitute was constructed from human corneal cells with AAPCM in an organ coculture system. Biochemical marker expression of the construct was measured by immunofluorescent staining and morphological structures were observed using scanning electron microscopy. Pump function and biophysical properties were examined by penetrating keratoplasty and follow-up clinical observations. RESULTS: There were no cells in the AAPCM or PAPCM, whereas collagen fibers, Bowman's membrane, and Descemet's membrane were retained. The biomechanical property of AAPCM was better than PAPCM. Human corneal cells grew better on the AAPCM than on the PAPCM. There was no cytotoxicity for the suspending ring soaking solutions. For the constructed full-depth human corneal replacements keratocytes scattered uniformly throughout the AAPCM and expressed vimentin. The epithelial layer was located on the surface of Bowman's membrane and composed of three or four layers of epithelial cells expressing cytokeratin 3. One layer of endothelial cells covered the stromal surface of AAPCM, expressed Na+/K+ATPase and formed the endothelial layer. The construct was similar to normal human corneas, with many microvilli on the epithelial cell surface, stromal cells with a long shuttle shape, and zonula occludens on the interface of endothelial cells. The construct withstood surgical procedures during penetrating keratoplasty. The corneal transparency increased gradually and was almost completely restored 7d after surgery. CONCLUSION: AAPCM is an ideal scaffold for constructing full-thickness corneal replacement, and functional human full-thickness corneal replacements are successfully constructed using AAPCM and human corneal cells.

3.
Ophthalmic Res ; 40(6): 282-90, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18463426

RESUMO

OBJECTIVE: To evaluate the effects of different biomedical membranes on alkali-burned cornea in vivo. METHODS: 12 New Zealand rabbits were chosen and randomly divided into four groups. The right cornea of each rabbit was made into an alkali-burned model with 1 mmol/l NaOH. Poly-D,L-lactic acid (PDLLA), PDLLA modified with collagen (PDLLA/collagen) and PDLLA modified with chitosan (PDLLA/chitosan) membranes were transplanted onto the alkali-burned corneas for evaluation. Clinical evaluations were performed daily with a slit lamp. On the 12th day after surgery, the progress in wound healing was compared by clinical and histological examination. The reepithelialization of each cornea was evaluated with fluorescein staining and 3 corneas of each group were excised to observe histological changes such as corneal wound healing, inflammation and collagen synthesis. RESULTS: The wound healing rate of the PDLLA/chitosan group was higher than in the other groups. A more orderly arrangement of collagen and mild inflammation was observed. The control group had the next best performance, while the PDLLA/collagen and PDLLA alone treatment groups showed the worst results. CONCLUSION: PDLLA/chitosan promoted wound healing of alkali-burned corneas in vivo and decreased scar tissue formation, while the effect of the PDLLA/collagen and PDLLA membranes was to promote corneal ulcers, which suggests that PDLLA/chitosan membrane transplantation is a potential effective strategy for treatment of alkali-burned cornea.


Assuntos
Queimaduras Químicas/cirurgia , Doenças da Córnea/cirurgia , Queimaduras Oculares/induzido quimicamente , Membranas Artificiais , Animais , Queimaduras Químicas/fisiopatologia , Quitosana , Colágeno , Doenças da Córnea/fisiopatologia , Modelos Animais de Doenças , Epitélio Corneano/fisiologia , Ácido Láctico , Poliésteres , Polímeros , Coelhos , Hidróxido de Sódio , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...