Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 5529-5549, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439277

RESUMO

Near-infrared spectroscopy (NIRS) has emerged as a key technique for rapid quality detection owing to its fast, non-destructive, and eco-friendly characteristics. However, its practical implementation within the formulation industry is challenging owing to insufficient data, which renders model fitting difficult. The complexity of acquiring spectra and spectral reference values results in limited spectral data, aggravating the problem of low generalization, which diminishes model performance. To address this problem, we introduce what we believe to be a novel approach combining NIRS with Wasserstein generative adversarial networks (WGANs). Specifically, spectral data are collected from representative samples of raw material provided by a formula enterprise. Then, the WGAN augments the database by generating synthetic data resembling the raw spectral data. Finally, we establish various prediction models using the PLSR, SVR, LightGBM, and XGBoost algorithms. Experimental results show the NIRS-WGAN method significantly improves the performance of prediction models, with R2 and RMSE of 0.949 and 1.415 for the chemical components of sugar, respectively, and 0.922 and 0.243 for nicotine. The proposed framework effectively enhances the predictive capabilities of various models, addressing the issue caused by limited training data in NIRS prediction tasks.

2.
PeerJ ; 11: e16625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099302

RESUMO

Background: A critical aspect of in silico drug discovery involves the prediction of drug-target affinity (DTA). Conducting wet lab experiments to determine affinity is both expensive and time-consuming, making it necessary to find alternative approaches. In recent years, deep learning has emerged as a promising technique for DTA prediction, leveraging the substantial computational power of modern computers. Methods: We proposed a novel sequence-based approach, named KC-DTA, for predicting drug-target affinity (DTA). In this approach, we converted the target sequence into two distinct matrices, while representing the molecule compound as a graph. The proposed method utilized k-mers analysis and Cartesian product calculation to capture the interactions and evolutionary information among various residues, enabling the creation of the two matrices for target sequence. For molecule, it was represented by constructing a molecular graph where atoms serve as nodes and chemical bonds serve as edges. Subsequently, the obtained target matrices and molecule graph were utilized as inputs for convolutional neural networks (CNNs) and graph neural networks (GNNs) to extract hidden features, which were further used for the prediction of binding affinity. Results: In order to evaluate the effectiveness of the proposed method, we conducted several experiments and made a comprehensive comparison with the state-of-the-art approaches using multiple evaluation metrics. The results of our experiments demonstrated that the KC-DTA method achieves high performance in predicting drug-target affinity (DTA). The findings of this research underscore the significance of the KC-DTA method as a valuable tool in the field of in silico drug discovery, offering promising opportunities for accelerating the drug development process. All the data and code are available for access on https://github.com/syc2017/KCDTA.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Benchmarking , Evolução Biológica , Sistemas de Liberação de Medicamentos
3.
Biomimetics (Basel) ; 8(4)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37622948

RESUMO

With the rapid development of enabling technologies like VR and AR, we human beings are on the threshold of the ubiquitous human-centric intelligence era. 6G is believed to be an indispensable cornerstone for efficient interaction between humans and computers in this promising vision. 6G is supposed to boost many human-centric applications due to its unprecedented performance improvements compared to 5G and before. However, challenges are still to be addressed, including but not limited to the following six aspects: Terahertz and millimeter-wave communication, low latency and high reliability, energy efficiency, security, efficient edge computing and heterogeneity of services. It is a daunting job to fit traditional analytical methods into these problems due to the complex architecture and highly dynamic features of ubiquitous interactive 6G systems. Fortunately, deep learning can circumvent the interpretability issue and train tremendous neural network parameters, which build mapping relationships from neural network input (status and specific requirements of a 6G application) to neural network output (settings to satisfy the requirements). Deep learning methods can be an efficient alternative to traditional analytical methods or even conquer unresolvable predicaments of analytical methods. We review representative deep learning solutions to the aforementioned six aspects separately and focus on the principles of fitting a deep learning method into specific 6G issues. Based on this review, our main contributions are highlighted as follows. (i) We investigate the representative works in a systematic view and find out some important issues like the vital role of deep reinforcement learning in the 6G context. (ii) We point out solutions to the lack of training data in 6G communication context. (iii) We reveal the relationship between traditional analytical methods and deep learning, in terms of 6G applications. (iv) We identify some frequently used efficient techniques in deep-learning-based 6G solutions. Finally, we point out open problems and future directions.

4.
Sci Rep ; 13(1): 11119, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429961

RESUMO

Flue-cured tobacco grading plays a crucial role in tobacco leaf purchase and the formulation of tobacco leaf groups. However, the traditional flue-cured tobacco grading mode is usually manual, which is time-consuming, laborious, and subjective. Hence, it is essential to research more efficient and intelligent flue-cured tobacco grading methods. Most existing methods suffer from the more classes less accuracy problem. Meanwhile, limited by different industry applications, the flue-cured tobacco datasets are hard to be obtained publicly. The existing methods employ relatively small and lower resolution tobacco data that are hard to apply in practice. Therefore, aiming at the insufficiency of feature extraction ability and the inadaptability to multiple flue-cured tobacco grades, we collected the largest and highest resolution dataset and proposed an efficient flue-cured tobacco grading method based on deep densely convolutional network (DenseNet). Diverging from other approaches, our method has a unique connectivity pattern of convolutional neural network that concatenates preceding tobacco feature data. This mode connects all previous layers to the subsequent layer directly for tobacco feature transmission. This idea can better extract depth tobacco image information features and transmit each layer's data, thereby reducing the information loss and encouraging tobacco feature reuse. Then, we designed the whole data pre-processing process and experimented with traditional and deep learning algorithms to verify our dataset usability. The experimental results showed that DenseNet could be easily adapted by changing the output of the fully connected layers. With an accuracy of 0.997, significantly higher than the other intelligent tobacco grading methods, DenseNet came to the best model for solving our flue-cured tobacco grading problem.


Assuntos
Trabalho de Parto , Nicotiana , Gravidez , Feminino , Humanos , Algoritmos , Inteligência , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...