Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 612830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614645

RESUMO

Inflammatory bowel diseases (IBD), encompassing ulcerative colitis (UC), and Crohn's disease (CD), are a group of disorders characterized by chronic, relapsing, and remitting, or progressive inflammation along the gastrointestinal tract. IBD is accompanied by massive infiltration of circulating leukocytes into the intestinal mucosa. Leukocytes such as neutrophils, monocytes, and T-cells are recruited to the affected site, exacerbating inflammation and causing tissue damage. Current treatments used to block inflammation in IBD include aminosalicylates, corticosteroids, immunosuppressants, and biologics. The first successful biologic, which revolutionized IBD treatment, targeted the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα). Infliximab, adalimumab, and other anti-TNF antibodies neutralize TNFα, preventing interactions with its receptors and reducing the inflammatory response. However, up to 40% of people with IBD become unresponsive to anti-TNFα therapy. Thus, more recent biologics have been designed to block leukocyte trafficking to the inflamed intestine by targeting integrins and adhesins. For example, natalizumab targets the α4 chain of integrin heterodimers, α4ß1 and α4ß7, on leukocytes. However, binding of α4ß1 is associated with increased risk for developing progressive multifocal leukoencephalopathy, an often-fatal disease, and thus, it is not used to treat IBD. To target leukocyte infiltration without this life-threatening complication, vedolizumab was developed. Vedolizumab specifically targets the α4ß7 integrin and was approved to treat IBD based on the presumption that it would block T-cell recruitment to the intestine. Though vedolizumab is an effective treatment for IBD, some studies suggest that it may not block T-cell recruitment to the intestine and its mechanism(s) of action remain unclear. Vedolizumab may reduce inflammation by blocking recruitment of T-cells, or pro-inflammatory monocytes and dendritic cells to the intestine, and/or vedolizumab may lead to changes in the programming of innate and acquired immune cells dampening down inflammation.

2.
J Leukoc Biol ; 106(4): 863-877, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313375

RESUMO

This study tested the hypothesis that mucosa associated lymphoid tissue 1 (Malt1) deficiency causes osteoporosis in mice by increasing osteoclastogenesis and osteoclast activity. A patient with combined immunodeficiency (CID) caused by MALT1 deficiency had low bone mineral density resulting in multiple low impact fractures that was corrected by hematopoietic stem cell transplant (HSCT). We have reported that Malt1 deficient Mϕs, another myeloid cell type, are hyper-responsive to inflammatory stimuli. Our objectives were to determine whether Malt1 deficient mice develop an osteoporosis-like phenotype and whether it was caused by Malt1 deficiency in osteoclasts. We found that Malt1 deficient mice had low bone volume by 12 weeks of age, which was primarily associated with reduced trabecular bone. Malt1 protein is expressed and active in osteoclasts and is induced by receptor activator of NF-κB ligand (RANKL) in preosteoclasts. Malt1 deficiency did not impact osteoclast differentiation or activity in vitro. However, Malt1 deficient (Malt1-/- ) mice had more osteoclasts in vivo and had lower levels of serum osteoprotegerin (OPG), an endogenous inhibitor of osteoclastogenesis. Inhibition of Malt1 activity in Mϕs induced MCSF production, required for osteoclastogenesis, and decreased OPG production in response to inflammatory stimuli. In vitro, MCSF increased and OPG inhibited osteoclastogenesis, but effects were not enhanced in Malt1 deficient osteoclasts. These data support the hypothesis that Malt1 deficient mice develop an osteoporotic phenotype with increased osteoclastogenesis in vivo, but suggest that this is caused by inflammation rather than an effect of Malt1 deficiency in osteoclasts.


Assuntos
Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/deficiência , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Animais , Densidade Óssea/efeitos dos fármacos , Transplante de Medula Óssea , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Fator Estimulador de Colônias de Macrófagos/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Tamanho do Órgão , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Osteoprotegerina/metabolismo , Ligante RANK/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Leukoc Biol ; 104(3): 557-572, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29901822

RESUMO

This study tested the hypothesis that Malt1 deficiency in macrophages contributes to dextran sodium sulfate (DSS)-induced intestinal inflammation in Malt1-deficient mice. In people, combined immunodeficiency caused by a homozygous mutation in the MALT1 gene is associated with increased susceptibility to bacterial infections and chronic inflammation, including severe inflammation along the gastrointestinal tract. The consequences of Malt1 deficiency have largely been attributed to its role in lymphocytes, but Malt1 is also expressed in macrophages, where it is activated downstream of TLR4 and dectin-1. The effect of Malt1 deficiency in murine macrophages and its contribution to DSS-induced colitis have not been investigated. Our objectives were to compare the susceptibility of Malt1+/+ and Malt1-/- mice to DSS-induced colitis, to determine the contribution of macrophages to DSS-induced colitis in Malt1-/- mice, and to assess the effect of innate immune stimuli on Malt1-/- macrophage inflammatory responses. We found that Malt1 deficiency exacerbates DSS-induced colitis in mice, accompanied by higher levels of IL-1ß, and that macrophages and IL-1 signaling contribute to pathology in Malt1-/- mice. Malt1-/- macrophages produce more IL-1ß in response to either TLR4 or dectin-1 ligation, whereas inhibition of Malt1 proteolytic (paracaspase) activity blocked IL-1ß production. TLR4 or dectin-1 stimulation induced Malt1 protein levels but decreased its paracaspase activity. Taken together, these data support the hypothesis that Malt1-/- macrophages contribute to increased susceptibility of Malt1-/- mice to DSS-induced colitis, which is dependent on IL-1 signaling. Increased IL-1ß production by MALT1-deficient macrophages may also contribute to chronic inflammation in people deficient in MALT1.


Assuntos
Colite/imunologia , Interleucina-1beta/biossíntese , Macrófagos/imunologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/imunologia , Animais , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Feminino , Inflamação/induzido quimicamente , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...