Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904458

RESUMO

The ethylene propylene diene monomer (EPDM) is utilized in high voltage direct current (HVDC) cable accessories due to its exceptional insulation properties. The microscopic reactions and space charge characteristics of EPDM under electric fields are studied using density functional theory. The results indicate that as the electric field intensity increases, the total energy decreases while the dipole moment and polarizability increase, leading to a decrease in the stability of EPDM. The molecular chain elongates under the stretching effect of the electric field and the stability of the geometric structure decreases, resulting in a decline in its mechanical and electrical properties. With increased electric field intensity, the energy gap of the front orbital decreases, and its conductivity improves. Additionally, the active site of the molecular chain reaction shifts, leading to different degrees of hole trap and electron trap energy level distribution in the area where the front track of the molecular chain is located, making EPDM more susceptible to trapping free electrons or injecting charge. When the electric field intensity reaches 0.0255 a.u., the EPDM molecular structure is destroyed, and its infrared spectrum undergoes significant changes. These findings provide a basis for future modification technology, and theoretical support for high voltage experiments.

2.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904527

RESUMO

In this study, the quantum chemical method was used to investigate the microscopic characteristics of α-poly viny difluoride (PVDF) molecules under the influence of an electric field, and the impact of mechanical stress and electric field polarization on the insulation performance of PVDF was analyzed through the material's structural and space charge characteristics. The findings reveal that long-term polarization of an electric field leads to a gradual decline in stability and a reduction in the energy gap of the front orbital, resulting in the improved conductivity of PVDF molecules and a change in the reactive active site of the molecular chain. When the energy gap reaches a certain value, a chemical bond fracture occurs, with the C-H and C-F bonds at the ends of the backbone breaking first to form free radicals. This process is triggered by an electric field of 8.7414 × 109 V/m, which leads to the emergence of a virtual frequency in the infrared spectrogram and the eventual breakdown of the insulation material. These results are of great significance in understanding the aging mechanism of electric branches in PVDF cable insulation and optimizing the modification of PVDF insulation materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA