Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(15): 4963-4971, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28382341

RESUMO

In this work, we studied the performance enhancement of organic thin-film solar cells (OSCs) originating from the presence of diffraction gratings on the surface of the active layer. Two types of diffraction gratings, periodic gratings (Blu-ray disc recordable: BD-R) and quasi-random gratings (Blu-ray disc: BD), were employed as master templates for grating structures. The grating structures were introduced to the surfaces of poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) films, which were the active layers of the solar cells. The addition of the grating structures led to an increase of light absorption in the absorption region of P3HT:PCBM induced by light scattering. Furthermore, the grating-coupled surface plasmon resonance generated additional light absorption peaks. With illumination of non-polarized light at a normal incident angle, the short-circuit current densities of the BD-R and BD solar cells improved by 11.05% and 10.6%, respectively. Efficiency improvements of 19.28% and 3.21% were also observed for the BD-R and BD devices, respectively. Finally, the finite-difference time-domain simulation results revealed an enhanced electric field in the P3HT:PCBM layer, especially in the BD-R OSC devices.

2.
Phys Chem Chem Phys ; 18(27): 18500-6, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27338656

RESUMO

In this study, urchin-like gold nanoparticles (UL-AuNPs) are used in the fabrication of organic thin-film solar cells (OSCs). UL-AuNPs, which have gold nanothorns on their surface, enhance light accumulation by acting as light-trapping materials. This is due to the enhanced electric field and light scattering attributed to the nanothorns on the surface of the nanoparticles. UL-AuNPs were incorporated into a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT: PSS) thin-film layer of organic thin-film solar cells (OSCs). UV-vis spectra, atomic force microscopy (AFM) images, current density versus voltage properties, and the impedance spectra of the fabricated devices were recorded at various concentrations of UL-AuNPs. We found that the efficiency of the OSCs with UL-AuNPs was not only higher than that of a reference cell without nanoparticles but also higher than that of OSCs with spherical AuNPs. Finite-difference time-domain (FDTD) simulation indicated that the electric field around the UL-AuNPs increased due to the presence of nanothorns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA