Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167113, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37717748

RESUMO

The South China Sea (SCS) is a receptor of pollution sources from various parts of Asia and is heavily impacted by strong meteorological systems, which thus dictate aerosol variability over the region. This study analyzes long-term aerosol optical properties observed at Dongsha Island (a representative site in northern SCS) from 2009 to 2021 and Taiping Island (a representative site in southern SCS) from 2012 to 2021 to better apprehend the temporal evolution of columnar aerosols over the SCS. The noticeable difference in loadings, optical properties, and compositions of aerosols between northern and southern SCS was due to the influence of dissimilar emission sources and transport mechanisms. Column-integrated aerosol optical depth (AOD) over northern SCS (range of monthly mean at 500 nm; 0.12-0.51) was significantly greater than southern SCS (0.09-0.21). The maximum AOD in March (0.51 ± 0.28) at Dongsha was attributed to westerlies coupled with biomass-burning (BB) emissions from peninsular Southeast Asia, whereas the maximum AOD at Taiping in September (0.21 ± 0.25) was owing to various pollution from the Philippines, Malaysia, and Indonesia. Fine-mode aerosol dominated over northern SCS (range of monthly mean Angstrom exponent for 440-870 nm: 0.85-1.36) due to substantial influence from continental sources including anthropogenic and BB emissions while coarse-mode particles dominated over southern SCS (0.54-1.28) due to relatively more influence from marine source. More absorbing columnar aerosols prevailed over northern SCS (range of monthly mean single scattering albedo at 675 nm: 0.92-0.99) compared to southern SCS (0.95-0.98) owing to differences in aerosol composition with respect to sources. Special pollution events showcased possible significant impacts on marine ecosystems and regional climate. This study encourages the establishment of more ground-based aerosol monitoring networks and the inclusion of modeling simulations to comprehend the complex nature of aerosol over this vast marginal sea.

2.
Sci Total Environ ; 834: 155291, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35439502

RESUMO

Continental outflows from peninsular Southeast Asia and East Asia dominate the widespread dispersal of air pollutants over subtropical western North Pacific during spring and autumn, respectively. This study analyses the chemical composition and optical properties of PM10 aerosols during autumn and spring at a representative high-altitude site, viz., Lulin Atmospheric Background Station (23.47°N, 120.87°E; 2862 m a.s.l.), Taiwan. PM10 mass was reconstructed and the contributions of major chemical components were also delineated. Aerosol scattering (σsp) and absorption (σap) coefficients were regressed on mass densities of major chemical components by assuming external mixing between them, and the site-specific mass scattering efficiency (MSE) and mass absorption efficiency (MAE) of individual components for dry conditions were determined. NH4NO3 exhibited the highest MSE among all components during both seasons (8.40 and 12.58 m2 g-1 at 550 nm in autumn and spring, respectively). (NH4)2SO4 and organic matter (OM) accounted for the highest σsp during autumn (51%) and spring (50%), respectively. Mean MAE (mean contribution to σap) of elemental carbon (EC) at 550 nm was 2.51 m2 g-1 (36%) and 7.30 m2 g-1 (61%) in autumn and spring, respectively. Likewise, the mean MAE (mean contribution to σap) of organic carbon (OC) at 550 nm was 0.84 m2 g-1 (64%) and 0.83 m2 g-1 (39%) in autumn and spring, respectively. However, a classification matrix, based on scattering Ångström exponent, absorption Ångström exponent, and single scattering albedo (ω), demonstrated that the composite absorbing aerosols were EC-dominated (with weak absorption; ω = 0.91-0.95) in autumn and a combination of EC-dominated and EC/OC mixture (with moderate absorption; ω = 0.85-0.92) in spring. This study demonstrates a strong link between chemical composition and optical properties of aerosol and provides essential information for model simulations to assess the imbalance in regional radiation budget with better accuracy over the western North Pacific.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Material Particulado/análise , Estações do Ano
3.
Sci Total Environ ; 827: 154255, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35247399

RESUMO

East Asian dust episodes have a multitude of impacts, including on human health, environment, and climate over near-source and receptor regions. However, the mechanistic understanding of the synoptic conditions of these outbreaks at different altitude layers, and their eventual environmental impacts are less studied. The present study analyzed the synoptic transport patterns of East Asian dust during multiple dust generation episodes that occurred over only a few days apart in northern China, and which eventually delivered high PM10 concentrations to surface level and high-altitude locations in Taiwan. Whether the dust plume was uplifted ahead of or behind the 700 hPa trough over East Asia determined its trajectory and eventual impact on the environment downwind. The total dust (iron) deposition over the ocean surface preceding arrival to Taiwan was 2.4 mg m-2 (0.95 µg m-2) for the episode impacting the surface level and 5.0 mg m-2 (4.6 µg m-2) for the episode impacting high-altitude Taiwan. Dust deposition in marine areas east of China was more intense for the higher altitude transport event that was uplifted behind the 700 hPa trough and resulted in twice higher marine Chl-a concentrations. Furthermore, we estimated a dust-induced direct radiative effect over a high mountainous region in Taiwan of -6.2 to -8.2 W m-2 at the surface, -1.9 to -2.9 W m-2 at the top of the atmosphere and +3.9 to +5.3 W m-2 in the atmosphere. This dust-induced atmospheric warming and surface cooling are non-negligible influences on the atmospheric thermal structure and biogeochemical cycle over the western North Pacific. Overall, this study highlights the significant impacts of dust particles on the marine ecosystem and atmospheric radiation budget over the downwind region, thus lays the foundation for linking these impacts to the initial synoptic conditions in the source area.


Assuntos
Poluentes Atmosféricos , Poeira , Poluentes Atmosféricos/análise , Atmosfera , Poeira/análise , Ecossistema , Monitoramento Ambiental/métodos , Humanos
4.
Sci Total Environ ; 809: 151180, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699812

RESUMO

Atmospheric humic-like substances (HULIS) are important components of biomass-burning (BB) emissions and highly associated with light-absorbing organic aerosols (often referred to as brown carbon). This study highlights the importance of BB-emitted HULIS aerosols in peninsular Southeast Asian outflow to the subtropical western North Pacific. We determined various key light-absorbing characteristics of HULIS i.e. mass absorption cross-section (MACHULIS), absorbing component of the refractive index (kHULIS), and absorption Ångström exponent (AAEHULIS) based on ground-based aerosol light absorption measurements along with HULIS concentrations in springtime aerosols at Lulin Atmospheric Background Station (LABS; 2862 m above mean sea level), which is a representative high-altitude remote site in the western North Pacific. Daily variations of HULIS (0.58-12.92 µg m-3) at LABS were mostly linked with the influence from incoming air-masses, while correlations with BB tracers and secondary aerosols indicated the attribution of primary and secondary sources. Stronger light absorption capability of HULIS was clearly evident from MACHULIS and kHULIS values at 370 nm, which were about ~1.5 times higher during BB-dominated days (1.16 ± 0.75 m2 g-1 and 0.05 ± 0.03, respectively) than that during non-BB days (0.77 ± 0.89 m2 g-1 and 0.03 ± 0.04, respectively). Estimates from a simple radiative transfer model showed that HULIS absorption can add as much as 15.13 W g-1 to atmospheric warming, and ~46% more during BB-dominated than non-BB period, highlighting that HULIS light absorption may significantly affect the Earth-atmosphere system and tropospheric photochemistry over the western North Pacific.


Assuntos
Poluentes Atmosféricos , Substâncias Húmicas , Aerossóis/análise , Poluentes Atmosféricos/análise , Altitude , Biomassa , Carbono/análise , Monitoramento Ambiental , Substâncias Húmicas/análise , Material Particulado/análise
5.
Environ Pollut ; 276: 116735, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33611195

RESUMO

Light-absorbing organic carbon (or brown carbon, BrC) has been recognized as a critical driver in regional-to-global climate change on account of its significant contribution to light absorption. BrC sources vary from primary combustion processes (burning of biomass, biofuel, and fossil fuel) to secondary formation in the atmosphere. This paper investigated the light-absorbing properties of BrC such as site-specific mass absorption cross-section (MACBrC), absorption Ångström exponent (AAEBrC), and the absorbing component of the refractive index (kBrC) by using light absorption measurements from a 7-wavelength aethalometer over an urban environment of Chiang Mai, Thailand in northern peninsular Southeast Asia (PSEA), from March to April 2016. The contribution of BrC to total aerosol absorption (mean ± SD) was 46 ± 9%, 29 ± 7%, 24 ± 6%, 20 ± 4%, and 15 ± 3% at 370, 470, 520, 590, and 660 nm, respectively, highlighting the significant influence of BrC absorption on the radiative imbalance over northern PSEA. Strong and significant associations between BrC light absorption and biomass-burning (BB) organic tracers highlighted the influence of primary BB emissions. The median MACBrC and kBrC values at 370 nm were 2.4 m2 g-1 and 0.12, respectively. The fractional contribution of solar radiation absorbed by BrC relative to BC (mean ± SD) in the 370-950 nm range was estimated to be 34 ± 7%, which can significantly influence the regional radiation budget and consequently atmospheric photochemistry. This study provides valuable information to understand BrC absorption over northern PSEA and can be used in model simulations to reassess the regional climatic impact with greater accuracy.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Sudeste Asiático , Biomassa , Carbono/análise , Monitoramento Ambiental , Tailândia
6.
Environ Pollut ; 265(Pt B): 114813, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504975

RESUMO

This study examined the long-term trends in chemical components in PM2.5 (particulate matter with aerodynamic diameter ≤2.5 µm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003-2018. High ambient concentrations of PM2.5 and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (-0.67% yr-1; p = 0.01), elemental carbon (-0.48% yr-1; p = 0.18), and non-sea-salt (nss) K+ (-0.71% yr-1; p = 0.04) during 2003-2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (-0.26% yr-1; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO3- displayed an increasing trend (0.71% yr-1; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (-1.04% yr-1; p = 0.0001) during 2006-2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K+) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM2.5 chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Altitude , Ásia , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Taiwan
7.
Sci Total Environ ; 740: 140112, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32544735

RESUMO

Meteorological parameters are the critical factors affecting the transmission of infectious diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and influenza. Consequently, infectious disease incidence rates are likely to be influenced by the weather change. This study investigates the role of Singapore's hot tropical weather in COVID-19 transmission by exploring the association between meteorological parameters and the COVID-19 pandemic cases in Singapore. This study uses the secondary data of COVID-19 daily cases from the webpage of Ministry of Health (MOH), Singapore. Spearman and Kendall rank correlation tests were used to investigate the correlation between COVID-19 and meteorological parameters. Temperature, dew point, relative humidity, absolute humidity, and water vapor showed positive significant correlation with COVID-19 pandemic. These results will help the epidemiologists to understand the behavior of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus against meteorological variables. This study finding would be also a useful supplement to help the local healthcare policymakers, Center for Disease Control (CDC), and the World Health Organization (WHO) in the process of strategy making to combat COVID-19 in Singapore.


Assuntos
Infecções por Coronavirus , Pandemias , Tempo (Meteorologia) , Betacoronavirus , COVID-19 , Infecções por Coronavirus/epidemiologia , Humanos , Pneumonia Viral/epidemiologia , SARS-CoV-2 , Singapura
8.
Environ Pollut ; 259: 113871, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918141

RESUMO

Black carbon (BC) has been demonstrated to pose significant negative impacts on climate and human health. Equivalent BC (EBC) measurements were conducted using a 7-wavelength aethalometer, from March to May 2016, over an urban atmosphere, viz., Chiang Mai (98.957°E, 18.795°N, 373 m above sea level), Thailand in northern peninsular Southeast Asia. Daily variations in aerosol light absorption were mainly governed by open fire activities in the region. The mean mass-specific absorption cross-section (MAC) value of EBC at 880 nm was estimated to be 9.3 m2 g-1. The median EBC mass concentration was the highest in March (3.3 µg m-3) due to biomass-burning (comprised of forest fire and agricultural burning) emissions accompanied by urban air pollution within the planetary boundary layer under favorable meteorological conditions. Daily mean absorption Ångström exponent (AAE470/950) varied between 1.3 and 1.7 and could be due to variations in EBC emission sources and atmospheric mixing processes. EBC source apportionment results revealed that biomass-burning contributed significantly more to total EBC concentrations (34-92%) as compared to fossil-fuel (traffic emissions). Health risk estimates of EBC in relation to different health outcomes were assessed in terms of passive cigarette equivalence, highlighting the considerable health effects associated with exposure to EBC levels. As a necessary action, the reduction of EBC emissions would promote considerable climate and health co-benefits.


Assuntos
Poluentes Atmosféricos , Atmosfera , Carbono , Monitoramento Ambiental , Aerossóis , Poluentes Atmosféricos/análise , Sudeste Asiático , Atmosfera/química , Biomassa , Carbono/análise , Humanos , Medição de Risco
9.
Environ Geochem Health ; 42(7): 2081-2099, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31823181

RESUMO

This study enhances the understanding of the particulate matters (PM2.5 and PM10) and their physical and chemical behavior over the Taj Mahal, Agra, in North-Central India. The mass concentration was determined, and the shape and size of the particles and chemical characterizations have been carried out using SEM-EDX. The high level and significant variation of PM10 (162.2 µg m-3) and PM2.5 (83.9 µg m-3) were observed. The exceedance factor of the present study region is in critical and moderate condition. Morphological characterization reveals the particles of different shapes and sizes, while elemental analysis shows the presence of Si, Al, Fe, Ca, K, Cl, Mg, Na, Cu, and Zn. The dominance of Si indicated the contribution of natural sources, i.e., soil over this region. Three significant sources, viz. soil/road paved dust/vegetative emissions, vehicular/industrial emissions, and intermingling of dust and combustion particles, have been identified using principal component analysis over North-Central India. Health risk analysis of particulate matter identified carcinogenic and non-carcinogenic metals in the present study, which comes in contact with human beings during inhalation. The non-carcinogenic risk was much higher than the acceptable level. The high carcinogenic risks were found in Zn in PM10 and Cu in PM2.5 for both children and adults.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Metais/análise , Adulto , Poluentes Atmosféricos/efeitos adversos , Carcinógenos/análise , Carcinógenos/toxicidade , Criança , Monitoramento Ambiental/métodos , Humanos , Índia , Indústrias , Tamanho da Partícula , Material Particulado/efeitos adversos , Material Particulado/análise , Análise de Componente Principal , Medição de Risco , Silício/análise , Solo/química , Emissões de Veículos/análise , Zinco/análise , Zinco/toxicidade
10.
Sci Total Environ ; 633: 892-911, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29602124

RESUMO

A large concentration of finer particulate matter (PM2.5), the primary air-quality concern in northern peninsular Southeast Asia (PSEA), is believed to be closely related to large amounts of biomass burning (BB) particularly in the dry season. In order to quantitatively estimate the contributions of BB to aerosol radiative effects, we thoroughly investigated the physical, chemical, and optical properties of BB aerosols through the integration of ground-based measurements, satellite retrievals, and modelling tools during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment (7-SEAS/BASELInE) campaign in 2014. Clusters were made on the basis of measured BB tracers (Levoglucosan, nss-K+, and NO3-) to classify the degree of influence from BB over an urban atmosphere, viz., Chiang Mai (18.795°N, 98.957°E, 354m.s.l.), Thailand in northern PSEA. Cluster-wise contributions of BB to PM2.5, organic carbon, and elemental carbon were found to be 54-79%, 42-79%, and 39-77%, respectively. Moreover, the cluster-wise aerosol optical index (aerosol optical depth at 500nm≈0.98-2.45), absorption (single scattering albedo ≈0.87-0.85; absorption aerosol optical depth ≈0.15-0.38 at 440nm; absorption Ångström exponent ≈1.43-1.57), and radiative impacts (atmospheric heating rate ≈1.4-3.6Kd-1) displayed consistency with the degree of BB. PM2.5 during Extreme BB (EBB) was ≈4 times higher than during Low BB (LBB), whereas this factor was ≈2.5 for the magnitude of radiative effects. Severe haze (visibility≈4km) due to substantial BB loadings (BB to PM2.5≈79%) with favorable meteorology can significantly impact the local-to-regional air quality and the, daily life of local inhabitants as well as become a respiratory health threat. Additionally, such enhancements in atmospheric heating could potentially influence the regional hydrological cycle and crop productivity over Chiang Mai in northern PSEA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...