Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1415: 515-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440080

RESUMO

Retinal pigment epithelium (RPE) cells daily ingest the tips of the photoreceptor outer segments (POSs), with phagosome number varying throughout a 24-h cycle. A major focus in the literature has been on a peak in phagosome concentration shortly after lights-on. Moreover, this peak has frequently been inferred to represent a peak in POS tip ingestion. Here, we have reviewed old and new literature on the daily cycle of phagosome number in the RPE and conclude that there is more variation in the timing of phagosome concentration peaks than is currently acknowledged. We also discuss that phagosome quantity is affected by the rate of phagosome degradation as well as the rate of ingestion; given that phagosome half-life may not be constant throughout the daily cycle, maximal POS ingestion may not necessarily coincide with a peak in phagosome concentration.


Assuntos
Fagocitose , Epitélio Pigmentado da Retina , Fagossomos/metabolismo , Neurônios , Células Cultivadas , Segmento Externo das Células Fotorreceptoras da Retina
2.
J Neurosci ; 43(15): 2653-2664, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36878726

RESUMO

The photoreceptor outer segment (OS) is the phototransductive organelle in the vertebrate retina. OS tips are regularly ingested and degraded by the adjacent retinal pigment epithelium (RPE), offsetting the addition of new disk membrane at the base of the OS. This catabolic role of the RPE is essential for photoreceptor health, with defects in ingestion or degradation underlying different forms of retinal degeneration and blindness. Although proteins required for OS tip ingestion have been identified, spatiotemporal analysis of the ingestion process in live RPE cells is lacking; hence, the literature reflects no common understanding of the cellular mechanisms that affect ingestion. We imaged live RPE cells from mice (both sexes) to elucidate the ingestion events in real time. Our imaging revealed roles for f-actin dynamics and specific dynamic localizations of two BAR (Bin-Amphiphysin-Rvs) proteins, FBP17 and AMPH1-BAR, in shaping the RPE apical membrane as it surrounds the OS tip. Completion of ingestion was observed to occur by scission of the OS tip from the remainder of the OS, with a transient concentration of f-actin forming around the site of imminent scission. Actin dynamics were also required for regulating the size of the ingested OS tip, and the time course of the overall ingestion process. The size of the ingested tip is consistent with the term "phagocytosis." However, phagocytosis usually refers to engulfment of an entire particle or cell, whereas our observations of OS tip scission indicate a process that is more specifically described as "trogocytosis," in which one cell "nibbles" another cell.SIGNIFICANCE STATEMENT The ingestion of the photoreceptor outer segment (OS) tips by the retinal pigment epithelium (RPE) is a dynamic cellular process that has fascinated scientists for 60 years. Yet its molecular mechanisms had not been addressed in living cells. We developed a live-cell imaging approach to investigate OS tip ingestion, and focused on the dynamic participation of actin filaments and membrane-shaping BAR proteins. We observed scission of OS tips for the first time, and were able to monitor local changes in protein concentration preceding, during, and following scission. Our approach revealed that actin filaments were concentrated at the site of OS scission and were required for regulating the size of the ingested OS tip and the time course of the ingestion process.


Assuntos
Actinas , Epitélio Pigmentado da Retina , Masculino , Feminino , Camundongos , Animais , Epitélio Pigmentado da Retina/metabolismo , Actinas/metabolismo , Fagocitose/fisiologia , Citoesqueleto de Actina/metabolismo , Ingestão de Alimentos
3.
Curr Biol ; 33(8): 1513-1522.e4, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36977418

RESUMO

Most defects causing retinal degeneration in retinitis pigmentosa (RP) are rod-specific mutations, but the subsequent degeneration of cones, which produces loss of daylight vision and high-acuity perception, is the most debilitating feature of the disease. To understand better why cones degenerate and how cone vision might be restored, we have made the first single-cell recordings of light responses from degenerating cones and retinal interneurons after most rods have died and cones have lost their outer-segment disk membranes and synaptic pedicles. We show that degenerating cones have functional cyclic-nucleotide-gated channels and can continue to give light responses, apparently produced by opsin localized either to small areas of organized membrane near the ciliary axoneme or distributed throughout the inner segment. Light responses of second-order horizontal and bipolar cells are less sensitive but otherwise resemble those of normal retina. Furthermore, retinal output as reflected in responses of ganglion cells is less sensitive but maintains spatiotemporal receptive fields at cone-mediated light levels. Together, these findings show that cones and their retinal pathways can remain functional even as degeneration is progressing, an encouraging result for future research aimed at enhancing the light sensitivity of residual cones to restore vision in patients with genetically inherited retinal degeneration.


Assuntos
Visão de Cores , Degeneração Retiniana , Retinose Pigmentar , Humanos , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
5.
J Biol Chem ; 298(9): 102286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868562

RESUMO

In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.


Assuntos
Diferenciação Celular , Mitocôndrias , Niacinamida , Epitélio Pigmentado da Retina , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Niacinamida/farmacologia , Ácido Pirúvico/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
6.
Front Cell Dev Biol ; 9: 701853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262913

RESUMO

Apicobasal polarity is essential for epithelial cell function, yet the roles of different proteins in its completion is not fully understood. Here, we have studied the role of the polarity protein, CRB2, in human retinal pigment epithelial (RPE) cells during polarization in vitro, and in mature murine RPE cells in vivo. After establishing a simplified protocol for the culture of human fetal RPE cells, we studied the temporal sequence of the expression and localization of polarity and cell junction proteins during polarization in these epithelial cells. We found that CRB2 plays a key role in tight junction maintenance as well as in cell cycle arrest. In addition, our studies in vivo show that the knockdown of CRB2 in the RPE affects to the distribution of different apical polarity proteins and results in perturbed retinal homeostasis, manifested by the invasion of activated microglial cells into the subretinal space. Together our results demonstrate that CRB2 is a key protein for the development and maintenance of a polarized epithelium.

7.
J Neurosci ; 41(36): 7514-7531, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34301828

RESUMO

Primary cilia exhibit a distinct complement of proteins, including G-protein-coupled receptors (GPCRs) that mediate sensory and developmental signals. The localization of GPCRs to the ciliary membrane involves ciliary localization sequences (CLSs), but it is not known how CLSs might relate to cilium type. Here, we studied the localization of two rhodopsin (RHO)-like GPCRs, somatostatin receptor (SSTR3) and RHO, in three types of cilia, from inner medullary collecting duct (IMCD3) cells, hTERT-RPE1 cells (possessing pocket cilia), and rod photoreceptors (whose cilia grow into elaborate phototransductive outer segments). SSTR3 was localized specifically to all three types of cilia, whereas RHO showed more selectivity for the photoreceptor cilium. Focusing on C-terminal CLSs, we characterized a novel CLS in the SSTR3 C terminus, which was required for the robust ciliary localization of SSTR3. Replacing the C terminus of RHO with this SSTR3 CLS-enhanced ciliary localization, compared with full-length RHO in IMCD3 and hTERT-RPE1 cells. Addition of the SSTR3 CLS to the single transmembrane protein CD8A enabled ciliary localization. In hTERT-RPE1 cells, a partial SSTR3 CLS added to CD8A effected specific localization to the periciliary (pocket) membrane, demonstrating C-terminal localization sequence targeting to this domain. Using retinas from mice, including both sexes, we show that deletion of the C terminus of RHO reduced the rod outer segment localization and that addition of the SSTR3 C-terminal CLS to the truncated RHO partly rescued this mislocalization. Overall, the study details elements of the different C termini of SSTR3 and RHO that are major effectors in determining specificity of cilium (or pericilium) localization among different types of cilia.SIGNIFICANCE STATEMENT The localization of G-protein-coupled receptors to primary cilia is key to many types of signal transduction. After characterizing a novel C-terminal CLS in SSTR3, we investigated how SSTR3 and RHO localization to the cilium relates to C-terminal CLSs and to cilium type. We found that the SSTR3 C-terminal CLS was effective in three different types of cilia, but the RHO C terminus showed a clear localization preference for the highly elaborate photoreceptor cilium. When added to CD8A, part of the SSTR3 CLS promoted specific periciliary membrane localization in hTERT-RPE1 cells, demonstrating an effective CLS for this domain. Thus, we demonstrate that elements of the C termini of SSTR3 and RHO determine different localization patterns among different types of cilia.


Assuntos
Cílios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Somatostatina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Retina/metabolismo , Transdução de Sinais/fisiologia
8.
Nat Commun ; 11(1): 5400, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106502

RESUMO

Slug (SNAI2), a member of the well-conserved Snail family of transcription factors, has multiple developmental roles, including in epithelial-to-mesenchymal transition (EMT). Here, we show that Slug is critical for the pathological angiogenesis needed to sustain tumor growth, and transiently necessary for normal developmental angiogenesis. We find that Slug upregulation in angiogenic endothelial cells (EC) regulates an EMT-like suite of target genes, and suppresses Dll4-Notch signaling thereby promoting VEGFR2 expression. Both EC-specific Slug re-expression and reduced Notch signaling, either by γ-secretase inhibition or loss of Dll4, rescue retinal angiogenesis in SlugKO mice. Conversely, inhibition of VEGF signaling prevents excessive angiogenic sprouting of Slug overexpressing EC. Finally, endothelial Slug (but not Snail) is activated by the pro-angiogenic factor SDF1α via its canonical receptor CXCR4 and the MAP kinase ERK5. Altogether, our data support a critical role for Slug in determining the angiogenic response during development and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
9.
J Cell Sci ; 133(15)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661088

RESUMO

Melanosomes are motile, light-absorbing organelles that are present in pigment cells of the skin and eye. It has been proposed that melanosome localization, in both skin melanocytes and the retinal pigment epithelium (RPE), involves melanosome capture from microtubule motors by an unconventional myosin, which dynamically tethers the melanosomes to actin filaments. Recent studies with melanocytes have questioned this cooperative capture model. Here, we test the model in RPE cells by imaging melanosomes associated with labeled actin filaments and microtubules, and by investigating the roles of different motor proteins. We found that a deficiency in cytoplasmic dynein phenocopies the lack of myosin-7a, in that melanosomes undergo fewer of the slow myosin-7a-dependent movements and are absent from the RPE apical domain. These results indicate that microtubule-based motility is required for the delivery of melanosomes to the actin-rich apical domain and support a capture mechanism that involves both microtubule and actin motors.


Assuntos
Actinas , Melanossomas , Microtúbulos , Miosinas , Epitélio Pigmentado da Retina
10.
Sci Rep ; 8(1): 11652, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076417

RESUMO

Acquisition of cell polarization is essential for the performance of crucial functions, like a successful secretion and appropriate cell signaling in many tissues, and it depends on the correct functioning of polarity proteins, including the Crumbs complex. The CRB proteins, CRB1, CRB2 and CRB3, identified in mammals, are expressed in epithelial-derived tissues like brain, kidney and retina. CRB2 has a ubiquitous expression and has been detected in embryonic brain tissue; but currently there is no data regarding its localization in the adult brain. In our study, we characterized the presence of CRB2 in adult mice brain, where it is particularly enriched in cortex, hippocampus, hypothalamus and cerebellum. Double immunofluorescence analysis confirmed that CRB2 is a neuron-specific protein, present in both soma and projections where colocalizes with certain populations of exocytic and endocytic vesicles and with other members of the Crumbs complex. Finally, in the cortex of CRB1rd8 mutant mice that contain a mutation in the Crb1 gene generating a truncated CRB1 protein, there is an abnormal increase in the expression levels of the CRB2 protein which suggests a possible compensatory mechanism for the malfunction of CRB1 in this mutant background.


Assuntos
Encéfalo/metabolismo , Polaridade Celular/genética , Proteínas de Membrana/genética , Neurônios/metabolismo , Animais , Cerebelo/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Hipotálamo/metabolismo , Camundongos , Mutação , Neurônios/patologia , Transdução de Sinais/genética
11.
Proc Natl Acad Sci U S A ; 115(21): 5468-5473, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735674

RESUMO

Stargardt macular dystrophy 3 (STGD3) is caused by dominant mutations in the ELOVL4 gene. Like other macular degenerations, pathogenesis within the retinal pigment epithelium (RPE) appears to contribute to the loss of photoreceptors from the central retina. However, the RPE does not express ELOVL4, suggesting photoreceptor cell loss in STGD3 occurs through two cell nonautonomous events: mutant photoreceptors first affect RPE cell pathogenesis, and then, second, RPE dysfunction leads to photoreceptor cell death. Here, we have investigated how the RPE pathology occurs, using a STGD3 mouse model in which mutant human ELOVL4 is expressed in the photoreceptors. We found that the mutant protein was aberrantly localized to the photoreceptor outer segment (POS), and that resulting POS phagosomes were degraded more slowly in the RPE. In cell culture, the mutant POSs are ingested by primary RPE cells normally, but the phagosomes are processed inefficiently, even by wild-type RPE. The mutant phagosomes excessively sequester RAB7A and dynein, and have impaired motility. We propose that the abnormal presence of ELOVL4 protein in POSs results in phagosomes that are defective in recruiting appropriate motor protein linkers, thus contributing to slower degradation because their altered motility results in slower basal migration and fewer productive encounters with endolysosomes. In the transgenic mouse retinas, the RPE accumulated abnormal-looking phagosomes and oxidative stress adducts; these pathological changes were followed by pathology in the neural retina. Our results indicate inefficient phagosome degradation as a key component of the first cell nonautonomous event underlying retinal degeneration due to mutant ELOVL4.


Assuntos
Modelos Animais de Doenças , Proteínas do Olho/fisiologia , Degeneração Macular/patologia , Proteínas de Membrana/fisiologia , Mutação , Fagossomos/patologia , Células Fotorreceptoras/patologia , Epitélio Pigmentado da Retina/patologia , Animais , Movimento Celular , Células Cultivadas , Genes Dominantes , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Camundongos , Camundongos Transgênicos , Fagossomos/metabolismo , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo
12.
Sci Rep ; 5: 14504, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404741

RESUMO

The CRB proteins CRB1, CRB2 and CRB3 are members of the cell polarity complex Crumbs in mammals that together with Scribble and Par complexes stablish the polarity of a variety of cell types. Although many members of the Crumbs complex proteins are expressed in the retinal pigment epithelium (RPE), and even though the mRNA of CRB2 has been detected in ARPE-19 cells and in the RPE/Choroid, to date no CRB protein has yet been found in this tissue. To investigate this possibility, we generated an antibody that specifically recognize the mouse CRB2 protein, and we demonstrate the expression of CRB2 in mouse RPE. Confocal analysis shows that CRB2 is restricted to the apicolateral membrane of RPE cells, and more precisely, in the tight junctions. Our study identified CRB2 as the member of the CRB protein family that is present together with the rest of the components of the Crumbs complex in the RPE apico-lateral cell membrane. Considering that the functions of CRB proteins are decisive in the establishment and maintenance of cell-cell junctions in several epithelial-derived cell types, we believe that these findings are a relevant starting point for unraveling the functions that CRB2 might perform in the RPE.


Assuntos
Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Junções Aderentes/metabolismo , Animais , Membrana Celular/metabolismo , Glicoproteínas de Membrana , Camundongos , Transporte Proteico
13.
PLoS One ; 7(11): e50511, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226298

RESUMO

CRB3 (Crumbs homologue 3), a member of the CRB protein family (homologous to the Drosophila Crumbs), is expressed in different epithelium-derived cell types in mammals, where it seems to be involved in regulating the establishment and stability of tight junctions and in ciliogenesis. This protein has been also detected in the retina, but little is known about its localization and function in this tissue. Our goal here was to perform an in-depth study of the presence of CRB3 protein in the mouse retina and to analyze its expression during photoreceptor ciliogenesis and the establishment of the plexiform retinal layers. Double immunofluorescence experiments for CRB3 and well-known markers for the different retinal cell types were performed to study the localization of the CRB3 protein. According to our results, CRB3 is present from postnatal day 0 (P0) until adulthood in the mouse retina. It is localized in the inner segments (IS) of photoreceptor cells, especially concentrated in the area where the connecting cilium is located, in their synaptic terminals in the outer plexiform layer (OPL), and in sub-populations of amacrine and bipolar cells in the inner plexiform layer (IPL).


Assuntos
Proteínas de Membrana/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Transporte Proteico , Retina/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...