Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Am Soc Echocardiogr ; 37(2): 259-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995938

RESUMO

BACKGROUND: The dynamic shape of the normal adult mitral annulus has been shown to be important to mitral valve function. However, annular dynamics of the healthy mitral valve in children have yet to be explored. The aim of this study was to model and quantify the shape and major modes of variation of pediatric mitral valve annuli in four phases of the cardiac cycle using transthoracic echocardiography. METHODS: The mitral valve annuli of 100 children and young adults with normal findings on three-dimensional echocardiography were modeled in four different cardiac phases using the SlicerHeart extension for 3D Slicer. Annular metrics were quantified using SlicerHeart, and optimal normalization to body surface area was explored. Mean annular shapes and the principal components of variation were computed using custom code implemented in a new SlicerHeart module (Annulus Shape Analyzer). Shape was regressed over metrics of age and body surface area, and mean shapes for five age-stratified groups were generated. RESULTS: The ratio of annular height to commissural width of the mitral valve ("saddle shape") changed significantly throughout age for systolic phases (P < .001) but within a narrow range (median range, 0.20-0.25). Annular metrics changed statistically significantly between the diastolic and systolic phases of the cardiac cycle. Visually, the annular shape was maintained with respect to age and body surface area. Principal-component analysis revealed that the pediatric mitral annulus varies primarily in size (mode 1), ratio of annular height to commissural width (mode 2), and sphericity (mode 3). CONCLUSIONS: The saddle-shaped mitral annulus is maintained throughout childhood but varies significantly throughout the cardiac cycle. The major modes of variation in the pediatric mitral annulus are due to size, ratio of annular height to commissural width, and sphericity. The generation of age- and size-specific mitral annular shapes may inform the development of appropriately scaled absorbable or expandable mitral annuloplasty rings for children.


Assuntos
Ecocardiografia Tridimensional , Próteses Valvulares Cardíacas , Insuficiência da Valva Mitral , Adulto Jovem , Humanos , Criança , Valva Mitral/cirurgia , Ecocardiografia , Ecocardiografia Tridimensional/métodos
2.
Inf Process Med Imaging ; 13939: 810-821, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37416485

RESUMO

Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject's shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease.

3.
Circ Cardiovasc Imaging ; 16(3): e014671, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36866669

RESUMO

BACKGROUND: In hypoplastic left heart syndrome, tricuspid regurgitation (TR) is associated with circulatory failure and death. We hypothesized that the tricuspid valve (TV) structure of patients with hypoplastic left heart syndrome with a Fontan circulation and moderate or greater TR differs from those with mild or less TR, and that right ventricle volume is associated with TV structure and dysfunction. METHODS: TV of 100 patients with hypoplastic left heart syndrome and a Fontan circulation were modeled using transthoracic 3-dimensional echocardiograms and custom software in SlicerHeart. Associations of TV structure to TR grade and right ventricle function and volume were investigated. Shape parameterization and analysis was used to calculate the mean shape of the TV leaflets, their principal modes of variation, and to characterize associations of TV leaflet shape to TR. RESULTS: In univariate modeling, patients with moderate or greater TR had larger TV annular diameters and area, greater annular distance between the anteroseptal commissure and anteroposterior commissure, greater leaflet billow volume, and more laterally directed anterior papillary muscle angles compared to valves with mild or less TR (all P<0.001). In multivariate modeling greater total billow volume, lower anterior papillary muscle angle, and greater distance between the anteroposterior commissure and anteroseptal commissure were associated with moderate or greater TR (P<0.001, C statistic=0.85). Larger right ventricle volumes were associated with moderate or greater TR (P<0.001). TV shape analysis revealed structural features associated with TR, but also highly heterogeneous TV leaflet structure. CONCLUSIONS: Moderate or greater TR in patients with hypoplastic left heart syndrome with a Fontan circulation is associated with greater leaflet billow volume, a more laterally directed anterior papillary muscle angle, and greater annular distance between the anteroseptal commissure and anteroposterior commissure. However, there is significant heterogeneity of structure in the TV leaflets in regurgitant valves. Given this variability, an image-informed patient-specific approach to surgical planning may be needed to achieve optimal outcomes in this vulnerable and challenging population.


Assuntos
Técnica de Fontan , Síndrome do Coração Esquerdo Hipoplásico , Insuficiência da Valva Tricúspide , Humanos , Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/cirurgia , Técnica de Fontan/efeitos adversos , Ventrículos do Coração , Síndrome do Coração Esquerdo Hipoplásico/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Síndrome do Coração Esquerdo Hipoplásico/complicações , Insuficiência da Valva Tricúspide/diagnóstico por imagem , Insuficiência da Valva Tricúspide/etiologia , Insuficiência da Valva Tricúspide/cirurgia , Estudos Retrospectivos
4.
Orthod Craniofac Res ; 26(4): 560-567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36811276

RESUMO

OBJECTIVE: To present and validate an open-source fully automated landmark placement (ALICBCT) tool for cone-beam computed tomography scans. MATERIALS AND METHODS: One hundred and forty-three large and medium field of view cone-beam computed tomography (CBCT) were used to train and test a novel approach, called ALICBCT that reformulates landmark detection as a classification problem through a virtual agent placed inside volumetric images. The landmark agents were trained to navigate in a multi-scale volumetric space to reach the estimated landmark position. The agent movements decision relies on a combination of DenseNet feature network and fully connected layers. For each CBCT, 32 ground truth landmark positions were identified by 2 clinician experts. After validation of the 32 landmarks, new models were trained to identify a total of 119 landmarks that are commonly used in clinical studies for the quantification of changes in bone morphology and tooth position. RESULTS: Our method achieved a high accuracy with an average of 1.54 ± 0.87 mm error for the 32 landmark positions with rare failures, taking an average of 4.2 second computation time to identify each landmark in one large 3D-CBCT scan using a conventional GPU. CONCLUSION: The ALICBCT algorithm is a robust automatic identification tool that has been deployed for clinical and research use as an extension in the 3D Slicer platform allowing continuous updates for increased precision.


Assuntos
Pontos de Referência Anatômicos , Imageamento Tridimensional , Cefalometria/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Pontos de Referência Anatômicos/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38505097

RESUMO

In this paper, we present a deep learning-based method for surface segmentation. This technique consists of acquiring 2D views and extracting features from the surface such as the normal vectors. The rendered images are analyzed with a 2D convolutional neural network, such as a UNET. We test our method in a dental application for the segmentation of dental crowns. The neural network is trained for multi-class segmentation, using image labels as ground truth. A 5-fold cross-validation was performed, and the segmentation task achieved an average Dice of 0.97, sensitivity of 0.98 and precision of 0.98. Our method and algorithms are available as a 3DSlicer extension.

6.
Shape Med Imaging (2023) ; 14350: 201-210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38250732

RESUMO

Three-dimensional (3D) shape lies at the core of understanding the physical objects that surround us. In the biomedical field, shape analysis has been shown to be powerful in quantifying how anatomy changes with time and disease. The Shape AnaLysis Toolbox (SALT) was created as a vehicle for disseminating advanced shape methodology as an open source, free, and comprehensive software tool. We present new developments in our shape analysis software package, including easy-to-interpret statistical methods to better leverage the quantitative information contained in SALT's shape representations. We also show SlicerPipelines, a module to improve the usability of SALT by facilitating the analysis of large-scale data sets, automating workflows for non-expert users, and allowing the distribution of reproducible workflows.

7.
Shape Med Imaging (2023) ; 14350: 236-247, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38250733

RESUMO

Glaucoma causes progressive visual field deterioration and is the leading cause of blindness worldwide. Glaucomatous damage is irreversible and greatly impacts quality of life. Therefore, it is critically important to detect glaucoma early and closely monitor progression to preserve functional vision. Glaucoma is routinely monitored in the clinical setting using optical coherence tomography (OCT) for derived measures such as the thickness of important visual structures. There is not a consensus of what measures represent the most relevant biomarkers of glaucoma progression. Further, despite the increasing availability of longitudinal OCT data, a quantitative model of 3D structural change over time associated with glaucoma does not exist. In this paper we present an algorithm that will perform hierarchical geodesic modeling at the imaging level, considering 3D OCT images as observations of structural change over time. Hierarchical modeling includes subject-wise trajectories as geodesics in the space of diffeomorphisms and population level (glaucoma vs control) trajectories are also geodesics which explain subject-wise trajectories as deviations from the mean. Our preliminary experiments demonstrate a greater magnitude of structural change associated with glaucoma compared to normal aging. Our algorithm has the potential application in patient-specific monitoring and analysis of glaucoma progression as well as a statistical model of population trends and population variability.

8.
Shape Med Imaging (2023) ; 14350: 188-200, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38259262

RESUMO

Non-specific lower back pain (LBP) is a world-wide public health problem that affects people of all ages. Despite the high prevalence of non-specific LBP and the associated economic burdens, the pathoanatomical mechanisms for the development and course of the condition remain unclear. While intervertebral disc degeneration (IDD) is associated with LBP, there is overlapping occurrence of IDD in symptomatic and asymptomatic individuals, suggesting that degeneration alone cannot identify LBP populations. Previous work has been done trying to relate linear measurements of compression obtained from Magnetic Resonance Imaging (MRI) to pain unsuccessfully. To bridge this gap, we propose to use advanced non-Euclidean statistical shape analysis methods to develop biomarkers that can help identify symptomatic and asymptomatic adults who might be susceptible to standing-induced LBP. We scanned 4 male and 7 female participants who exhibited lower back pain after prolonged standing using an Open Upright MRI. Supine and standing MRIs were obtained for each participant. Patients reported their pain intensity every fifteen minutes within a period of 2 h. Using our proposed geodesic logistic regression, we related the structure of their lower spine to pain and computed a regression model that can delineate lower spine structures using reported pain intensities. These results indicate the feasibility of identifying individuals who may suffer from lower back pain solely based on their spinal anatomy. Our proposed spinal shape analysis methodology have the potential to provide powerful information to the clinicians so they can make better treatment decisions.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38226393

RESUMO

Skeletonization has been a popular shape analysis technique that models both the interior and exterior of an object. Existing template-based calculations of skeletal models from anatomical structures are a time-consuming manual process. Recently, learning-based methods have been used to extract skeletons from 3D shapes. In this work, we propose novel additional geometric terms for calculating skeletal structures of objects. The results are similar to traditional fitted s-reps but but are produced much more quickly. Evaluation on real clinical data shows that the learned model predicts accurate skeletal representations and shows the impact of proposed geometric losses along with using s-reps as weak supervision.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36262928

RESUMO

Interactive multimodal surgical simulators are powerful tools that allow efficient and objective assessment of surgical skills. Bilateral Sagittal Split Osteotomy (BSSO) requires precise cutting of the mandible with a motorized saw that cannot afford a high margin of error. Surgeons rely on visual and haptic cues that are hard to train for through existing curricula without training directly on patients. In this paper, we present a new algorithm to achieve low-cost, precise sawing of the bone that is capable of providing realistic force feedback to the user at haptic rates (~1000Hz). Our method is centered around treating the bone surface as a level set that is evolved at interactive rates upon user's interaction with the virtual saw. The movement of the virtual saw itself is governed by a rigid body solver which is attached to the pose (6 degrees of freedom) of the haptic device via a mass-spring-damper which also supplies haptic force feedback. Our method allows parameterization of the erosion rate, saw speed, and bone density thus making it suitable to any material shaving application including dentistry (e.g., tooth milling) and a variety of surgical osteotomies.

11.
PLoS One ; 17(10): e0275033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223330

RESUMO

The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository.


Assuntos
Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada de Feixe Cônico/métodos , Cabeça , Processamento de Imagem Assistida por Computador/métodos , Cintilografia , Crânio/diagnóstico por imagem
12.
J Am Soc Echocardiogr ; 35(9): 985-996.e11, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537615

RESUMO

BACKGROUND: Repair of complete atrioventricular canal (CAVC) is often complicated by residual left atrioventricular valve regurgitation. The structure of the mitral and tricuspid valves in biventricular hearts has previously been shown to be associated with valve dysfunction. However, the three-dimensional (3D) structure of the entire unrepaired CAVC valve has not been quantified. Understanding the 3D structure of the CAVC may inform optimized repair. METHODS: Novel open-source work flows were created in SlicerHeart for the modeling and quantification of CAVC valves on the basis of 3D echocardiographic images. These methods were applied to model the annulus, leaflets, and papillary muscle (PM) structure of 35 patients (29 with trisomy 21) with CAVC using transthoracic 3D echocardiography. The mean leaflet and annular shapes were calculated and visualized using shape analysis. Metrics of the complete native CAVC valve structure were compared with those of normal mitral valves using the Mann-Whitney U test. Associations between CAVC structure and atrioventricular valve regurgitation were analyzed. RESULTS: CAVC leaflet metrics varied throughout systole. Compared with normal mitral valves, the left CAVC PMs were more acutely angled in relation to the annular plane (P < .001). In addition, the anterolateral PM was laterally and inferiorly rotated in CAVC, while the posteromedial PM was more superiorly and laterally rotated, relative to normal mitral valves (P < .001). Lower native CAVC atrioventricular valve annular height and annular height-to-valve width ratio before repair were both associated with moderate or greater left atrioventricular valve regurgitation after repair (P < .01). CONCLUSIONS: It is feasible to model and quantify 3D CAVC structure using 3D echocardiographic images. The results demonstrate significant variation in CAVC structure across the cohort and differences in annular, leaflet, and PM structure compared with the mitral valve. These tools may be used in future studies to catalyze future research intended to identify structural associations of valve dysfunction and to optimize repair in this vulnerable and complex population.


Assuntos
Ecocardiografia Tridimensional , Defeitos dos Septos Cardíacos , Insuficiência da Valva Mitral , Ecocardiografia Tridimensional/métodos , Humanos , Valva Mitral/cirurgia , Software
13.
Stat Atlases Comput Models Heart ; 13131: 132-140, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35088061

RESUMO

Hypoplastic left heart syndrome (HLHS) is a congenital heart disease characterized by incomplete development of the left heart. Children with HLHS undergo a series of operations which result in the tricuspid valve (TV) becoming the only functional atrioventricular valve. Some of those patients develop tricuspid regurgitation which is associated with heart failure and death and necessitates further surgical intervention. Repair of the regurgitant TV, and understanding the connections between structure and function of this valve remains extremely challenging. Adult cardiac populations have used 3D echocardiography (3DE) combined with computational modeling to better understand cardiac conditions affecting the TV. However, these structure-function analyses rely on simplistic point-based techniques that do not capture the leaflet surface in detail, nor do they allow robust comparison of shapes across groups. We propose using statistical shape modeling and analysis of the TV using Spherical Harmonic Representation Point Distribution Models (SPHARM-PDM) in order to generate a reproducible representation, which in turn enables high dimensional low sample size statistical analysis techniques such as principal component analysis and distance weighted discrimination. Our initial results suggest that visualization of the differences in regurgitant vs. non-regurgitant valves can precisely locate populational structural differences as well as how an individual regurgitant valve differs from the mean shape of functional valves. We believe that these results will support the creation of modern image-based modeling tools, and ultimately increase the understanding of the relationship between valve structure and function needed to inform and improve surgical planning in HLHS.

14.
Stat Atlases Comput Models Heart ; 13593: 258-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36848309

RESUMO

Hypoplastic left heart syndrome (HLHS) is a congenital heart disease characterized by incomplete development of the left heart. Children with HLHS undergo a series of operations which result in the tricuspid valve (TV) becoming the only functional atrioventricular valve. Many HLHS patients develop tricuspid regurgitation and right ventricle enlargement which is associated with heart failure and death without surgical intervention on the valve. Understanding the connections between the geometry of the TV and its function remains extremely challenging and hinders TV repair planning. Traditional analysis methods rely on simple anatomical measures which do not capture information about valve geometry in detail. Recently, surface-based shape representations such as SPHARM-PDM have been shown to be useful for tasks such as discriminating between valves with normal or poor function. In this work we propose to use skeletal representations (s-reps), a more feature-rich geometric representation, for modeling the leaflets of the tricuspid valve. We propose an extension to previous s-rep fitting approaches to incorporate application-specific anatomical landmarks and population information to improve correspondence. We use several traditional statistical shape analysis techniques to evaluate the efficiency of this representation: using principal component analysis (PCA) we observe that it takes fewer modes of variation compared to boundary-based approaches to represent 90% of the population variation, while distance-weighted discrimination (DWD) shows that s-reps provide for more significant classification between valves with less regurgitation and those with more. These results show the power of using s-reps for modeling the relationship between structure and function of the tricuspid valve.

15.
Appl Med Artif Intell (2022) ; 13540: 150-160, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623420

RESUMO

Epidemiological studies indicate that microfractures (cracks) are the third most common cause of tooth loss in industrialized countries. An undetected crack will continue to progress, often with significant pain, until the tooth is lost. Previous attempts to utilize cone beam computed tomography (CBCT) for detecting cracks in teeth had very limited success. We propose a model that detects cracked teeth in high resolution (hr) CBCT scans by combining signal enhancement with a deep CNNbased crack detection model. We perform experiments on a dataset of 45 ex-vivo human teeth with 31 cracked and 14 controls. We demonstrate that a model that combines classical wavelet-based features with a deep 3D CNN model can improve fractured tooth detection accuracy in both micro-Computed Tomography (ground truth) and hr-CBCT scans. The CNN model is trained to predict a probability map showing the most likely fractured regions. Based on this fracture probability map we detect the presence of fracture and are able to differentiate a fractured tooth from a control tooth. We compare these results to a 2D CNN-based approach and we show that our approach provides superior detection results. We also show that the proposed solution is able to outperform oral and maxillofacial radiologists in detecting fractures from the hr-CBCT scans. Early detection of cracks will lead to the design of more appropriate treatments and longer tooth retention.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1810-1813, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891638

RESUMO

Diagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.


Assuntos
Osteoartrite , Transtornos da Articulação Temporomandibular , Biomarcadores , Humanos , Aprendizado de Máquina , Osteoartrite/diagnóstico , Articulação Temporomandibular , Transtornos da Articulação Temporomandibular/diagnóstico
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2948-2951, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891863

RESUMO

In this paper, machine learning approaches are proposed to support dental researchers and clinicians to study the shape and position of dental crowns and roots, by implementing a Patient Specific Classification and Prediction tool that includes RootCanalSeg and DentalModelSeg algorithms and then merges the output of these tools for intraoral scanning and volumetric dental imaging. RootCanalSeg combines image processing and machine learning approaches to automatically segment the root canals of the lower and upper jaws from large datasets, providing clinical information on tooth long axis for orthodontics, endodontics, prosthodontic and restorative dentistry procedures. DentalModelSeg includes segmenting the teeth from the crown shape to provide clinical information on each individual tooth. The merging algorithm then allows users to integrate dental models for quantitative assessments. Precision in dentistry has been mainly driven by dental crown surface characteristics, but information on tooth root morphology and position is important for successful root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and implant dentistry. In this paper we propose a patient specific classification and prediction of dental root canal and crown shape analysis workflow that employs image processing and machine learning methods to analyze crown surfaces, obtained by intraoral scanners, and three-dimensional volumetric images of the jaws and teeth root canals, obtained by cone beam computed tomography (CBCT).


Assuntos
Cavidade Pulpar , Polpa Dentária , Tomografia Computadorizada de Feixe Cônico , Coroas , Cavidade Pulpar/diagnóstico por imagem , Humanos , Regeneração
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2952-2955, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891864

RESUMO

In order to diagnose TMJ pathologies, we developed and tested a novel algorithm, MandSeg, that combines image processing and machine learning approaches for automatically segmenting the mandibular condyles and ramus. A deep neural network based on the U-Net architecture was trained for this task, using 109 cone-beam computed tomography (CBCT) scans. The ground truth label maps were manually segmented by clinicians. The U-Net takes 2D slices extracted from the 3D volumetric images. All the 3D scans were cropped depending on their size in order to keep only the mandibular region of interest. The same anatomic cropping region was used for every scan in the dataset. The scans were acquired at different centers with different resolutions. Therefore, we resized all scans to 512×512 in the pre-processing step where we also performed contrast adjustment as the original scans had low contrast. After the pre-processing, around 350 slices were extracted from each scan, and used to train the U-Net model. For the cross-validation, the dataset was divided into 10 folds. The training was performed with 60 epochs, a batch size of 8 and a learning rate of 2×10-5. The average performance of the models on the test set presented 0.95 ± 0.05 AUC, 0.93 ± 0.06 sensitivity, 0.9998 ± 0.0001 specificity, 0.9996 ± 0.0003 accuracy, and 0.91 ± 0.03 F1 score. This study findings suggest that fast and efficient CBCT image segmentation of the mandibular condyles and ramus from different clinical data sets and centers can be analyzed effectively. Future studies can now extract radiomic and imaging features as potentially relevant objective diagnostic criteria for TMJ pathologies, such as osteoarthritis (OA). The proposed segmentation will allow large datasets to be analyzed more efficiently for disease classification.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Mandíbula/diagnóstico por imagem
19.
Semin Orthod ; 27(2): 78-86, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34305383

RESUMO

With the exponential growth of computational systems and increased patient data acquisition, dental research faces new challenges to manage a large quantity of information. For this reason, data science approaches are needed for the integrative diagnosis of multifactorial diseases, such as Temporomandibular joint (TMJ) Osteoarthritis (OA). The Data science spectrum includes data capture/acquisition, data processing with optimized web-based storage and management, data analytics involving in-depth statistical analysis, machine learning (ML) approaches, and data communication. Artificial intelligence (AI) plays a crucial role in this process. It consists of developing computational systems that can perform human intelligence tasks, such as disease diagnosis, using many features to help in the decision-making support. Patient's clinical parameters, imaging exams, and molecular data are used as the input in cross-validation tasks, and human annotation/diagnosis is also used as the gold standard to train computational learning models and automatic disease classifiers. This paper aims to review and describe AI and ML techniques to diagnose TMJ OA and data science approaches for imaging processing. We used a web-based system for multi-center data communication, algorithms integration, statistics deployment, and process the computational machine learning models. We successfully show AI and data-science applications using patients' data to improve the TMJ OA diagnosis decision-making towards personalized medicine.

20.
Orthod Craniofac Res ; 24 Suppl 2: 26-36, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33973362

RESUMO

Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high-end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well-being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Ortodontia , Inteligência Artificial , Ciência de Dados , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...