Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 64(15): 13, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088826

RESUMO

Purpose: To determine if circulating antiretinal antibodies (ARAs) differ between patients affected by retinitis pigmentosa (RP) and control participants and to assess whether ARAs are associated with clinical outcomes in patients with RP. Methods: Cross-sectional study involving a group of patients clinically diagnosed with RP and a control group of healthy participants. Serum autoantibodies against enolase, heat shock protein 70 (HSP70), and carbonic anhydrase II (CAII) were tested in all participants using Jess capillary Western blot. We compared ARA prevalence between the RP and control groups and investigated the association of serum ARA positivity with macular edema and vitreomacular disorders in patients affected by RP. Results: Thirty-six patients affected by RP and a control group of 39 healthy individuals were included. Overall, at least one ARA positivity was detected in 89% and 80% of participants in the RP and control groups, respectively. We observed a similar prevalence of anti-CAII and anti-enolase ARA between patients and controls (P = 0.87 and P = 0.35, respectively). Sera from patients with RP tested positive for anti-HSP70 ARAs more frequently than those from controls (53% vs. 36%), albeit without reaching statistical significance (P = 0.29). Among the 72 eyes with RP, 25% presented with macular edema (most often bilateral) and 33% with epiretinal membrane and/or lamellar macular hole. None of the three ARAs was associated with an increased risk of any macular complications in eyes affected by RP (all P > 0.05). Conclusions: The prevalence of circulating ARAs against enolase, HSP70, and CAII is similar between patients affected by RP and healthy individuals. Our results provide evidence against the association of ARAs with macular edema and vitreomacular interface disorders in RP.


Assuntos
Edema Macular , Retinose Pigmentar , Humanos , Edema Macular/diagnóstico , Edema Macular/etiologia , Estudos Transversais , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/complicações , Retina , Fosfopiruvato Hidratase , Tomografia de Coerência Óptica/métodos
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895856

RESUMO

Zika virus (ZIKV) infection during pregnancy can result in severe birth defects, such as microcephaly, as well as a range of other related health complications. Heparin, a clinical-grade anticoagulant, is shown to protect neural progenitor cells from death following ZIKV infection. Although heparin can be safely used during pregnancy, it retains off-target anticoagulant effects if directly employed against ZIKV infection. In this study, we investigated the effects of chemically modified heparin derivatives with reduced anticoagulant activities. These derivatives were used as experimental probes to explore the structure-activity relationships. Precursor fractions of porcine heparin, obtained during the manufacture of conventional pharmaceutical heparin with decreased anticoagulant activities, were also explored. Interestingly, these modified heparin derivatives and precursor fractions not only prevented cell death but also inhibited the ZIKV replication of infected neural progenitor cells grown as neurospheres. These effects were observed regardless of the specific sulfation position or overall charge. Furthermore, the combination of heparin with Sofosbuvir, an antiviral licensed for the treatment of hepatitis C (HCV) that also belongs to the same Flaviviridae family as ZIKV, showed a synergistic effect. This suggested that a combination therapy approach involving heparin precursors and Sofosbuvir could be a potential strategy for the prevention or treatment of ZIKV infections.

3.
Front Immunol ; 14: 1186224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359560

RESUMO

Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Desenvolvimento de Medicamentos , Controle de Qualidade
4.
Front Cell Neurosci ; 17: 1125785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091923

RESUMO

Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the "omics era", successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.

5.
Nat Med ; 29(1): 75-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624312

RESUMO

Innovative pro-regenerative treatment strategies for progressive multiple sclerosis (PMS), combining neuroprotection and immunomodulation, represent an unmet need. Neural precursor cells (NPCs) transplanted in animal models of multiple sclerosis have shown preclinical efficacy by promoting neuroprotection and remyelination by releasing molecules sustaining trophic support and neural plasticity. Here we present the results of STEMS, a prospective, therapeutic exploratory, non-randomized, open-label, single-dose-finding phase 1 clinical trial ( NCT03269071 , EudraCT 2016-002020-86), performed at San Raffaele Hospital in Milan, Italy, evaluating the feasibility, safety and tolerability of intrathecally transplanted human fetal NPCs (hfNPCs) in 12 patients with PMS (with evidence of disease progression, Expanded Disability Status Scale ≥6.5, age 18-55 years, disease duration 2-20 years, without any alternative approved therapy). The safety primary outcome was reached, with no severe adverse reactions related to hfNPCs at 2-year follow-up, clearly demonstrating that hfNPC therapy in PMS is feasible, safe and tolerable. Exploratory secondary analyses showed a lower rate of brain atrophy in patients receiving the highest dosage of hfNPCs and increased cerebrospinal fluid levels of anti-inflammatory and neuroprotective molecules. Although preliminary, these results support the rationale and value of future clinical studies with the highest dose of hfNPCs in a larger cohort of patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Esclerose Múltipla , Células-Tronco Neurais , Adolescente , Adulto , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Esclerose Múltipla/terapia , Estudos Prospectivos , Transplante de Células-Tronco/métodos
6.
Nat Commun ; 13(1): 7579, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482070

RESUMO

The adult brain retains over life endogenous neural stem/precursor cells (eNPCs) within the subventricular zone (SVZ). Whether or not these cells exert physiological functions is still unclear. In the present work, we provide evidence that SVZ-eNPCs tune structural, electrophysiological, and behavioural aspects of striatal function via secretion of insulin-like growth factor binding protein-like 1 (IGFBPL1). In mice, selective ablation of SVZ-eNPCs or selective abrogation of IGFBPL1 determined an impairment of striatal medium spiny neuron morphology, a higher failure rate in GABAergic transmission mediated by fast-spiking interneurons, and striatum-related behavioural dysfunctions. We also found IGFBPL1 expression in the human SVZ, foetal and induced-pluripotent stem cell-derived NPCs. Finally, we found a significant correlation between SVZ damage, reduction of striatum volume, and impairment of information processing speed in neurological patients. Our results highlight the physiological role of adult SVZ-eNPCs in supporting cognitive functions by regulating striatal neuronal activity.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Ventrículos Laterais , Células-Tronco Neurais , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Eletrofisiologia Cardíaca , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ventrículos Laterais/fisiologia
7.
Front Cell Dev Biol ; 10: 986997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313580

RESUMO

Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.

8.
J Virol ; 96(19): e0112222, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36121298

RESUMO

Zika virus (ZIKV) is an arbovirus member of the Flaviviridae family that causes severe congenital brain anomalies in infected fetuses. The key target cells of ZIKV infection, human neural progenitor cells (hNPCs), are highly permissive to infection that causes the inhibition of cell proliferation and induces cell death. We have previously shown that pharmaceutical-grade heparin inhibits virus-induced cell death with negligible effects on in vitro virus replication in ZIKV-infected hNPCs at the "high" multiplicity of infection (MOI) of 1. Here, we show that heparin inhibits formation of ZIKV-induced intracellular vacuoles, a signature of paraptosis, and inhibits necrosis and apoptosis of hNPCs grown as neurospheres (NS). To test whether heparin preserved the differentiation of ZIKV-infected hNPCs into neuroglial cells, hNPCs were infected at the MOI of 0.001. In this experimental condition, heparin inhibited ZIKV replication by ca. 2 log10, mostly interfering with virion attachment, while maintaining its protective effect against ZIKV-induced cytopathicity. Heparin preserved differentiation into neuroglial cells of hNPCs that were obtained from either human-induced pluripotent stem cells (hiPSC) or by fetal tissue. Quite surprisingly, multiple additions of heparin to hNPCs enabled prolonged virus replication while preventing virus-induced cytopathicity. Collectively, these results highlight the potential neuroprotective effect of heparin that could serve as a lead compound to develop novel agents for preventing the damage of ZIKV infection on the developing brain. IMPORTANCE ZIKV is a neurotropic virus that invades neural progenitor cells (NPCs), causing inhibition of their proliferation and maturation into neurons and glial cells. We have shown previously that heparin, an anticoagulant also used widely during pregnancy, prevents ZIKV-induced cell death with negligible inhibition of virus replication. Here, we demonstrate that heparin also exerts antiviral activity against ZIKV replication using a much lower infectious inoculum. Moreover, heparin interferes with different modalities of virus-induced cell death. Finally, heparin-induced prevention of virus-induced NPC death allows their differentiation into neuroglial cells despite the intracellular accumulation of virions. These results highlight the potential use of heparin, or pharmacological agents derived from it, in pregnant women to prevent the devastating effects of ZIKV infection on the developing brain of their fetuses.


Assuntos
Heparina , Células-Tronco Neurais , Fármacos Neuroprotetores , Zika virus , Anticoagulantes/farmacologia , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular , Heparina/farmacologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Neuroglia/citologia , Neuroglia/virologia , Fármacos Neuroprotetores/farmacologia , Replicação Viral , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/tratamento farmacológico
9.
Curr Opin Neurol ; 35(3): 313-318, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35674074

RESUMO

PURPOSE OF THE REVIEW: Despite the significant progress in the development of disease-modifying treatments for multiple sclerosis (MS), repair of existing damage is still poorly addressed. Current research focuses on stem cell-based therapies as a suitable alternative or complement to current drug therapies. RECENT FINDINGS: Myelin damage is a hallmark of multiple sclerosis, and novel approaches leading to remyelination represent a promising tool to prevent neurodegeneration of the underlying axon. With increasing evidence of diminishing remyelination capacity of the MS brain with ageing and disease progression, exogenous cell transplantation is a promising therapeutic approach for restoration of oligodendrocyte precursor cell pool reserve and myelin regeneration. SUMMARY: The present review summarizes recent developments of remyelinating therapies in multiple sclerosis, focusing on exogenous cell-based strategies and discussing related scientific, practical, and ethical concerns.


Assuntos
Esclerose Múltipla , Remielinização , Axônios , Humanos , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina , Regeneração Nervosa , Transplante de Células-Tronco
10.
Front Immunol ; 13: 826091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251006

RESUMO

Neural stem cells (NSCs) are multipotent stem cells that reside in the fetal and adult mammalian brain, which can self-renew and differentiate into neurons and supporting cells. Intrinsic and extrinsic cues, from cells in the local niche and from distant sites, stringently orchestrates the self-renewal and differentiation competence of NSCs. Ample evidence supports the important role of NSCs in neuroplasticity, aging, disease, and repair of the nervous system. Indeed, activation of NSCs or their transplantation into injured areas of the central nervous system can lead to regeneration in animal models. Viral invasion of NSCs can negatively affect neurogenesis and synaptogenesis, with consequent cell death, impairment of cell cycle progression, early differentiation, which cause neural progenitors depletion in the cortical layer of the brain. Herein, we will review the current understanding of Zika virus (ZIKV) infection of the fetal brain and the NSCs, which are the preferential population targeted by ZIKV. Furthermore, the potential neurotropic properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may cause direct neurological damage, will be discussed.


Assuntos
Encéfalo/virologia , COVID-19/patologia , COVID-19/virologia , Neurogênese/fisiologia , Neurônios/virologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Humanos , Células-Tronco Neurais/virologia
11.
Traffic ; 23(1): 4-20, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34651407

RESUMO

Certain cell types must expand their exocytic pathway to guarantee efficiency and fidelity of protein secretion. A spectacular case is offered by decidualizing human endometrial stromal cells (EnSCs). In the midluteal phase of the menstrual cycle, progesterone stimulation induces proliferating EnSCs to differentiate into professional secretors releasing proteins essential for efficient blastocyst implantation. Here, we describe the architectural rearrangements of the secretory pathway of a human EnSC line (TERT-immortalized human endometrial stromal cells (T-HESC)). As in primary cells, decidualization entails proliferation arrest and the coordinated expansion of the entire secretory pathway without detectable activation of unfolded protein response (UPR) pathways. Decidualization proceeds also in the absence of ascorbic acid, an essential cofactor for collagen biogenesis, despite also the secretion of some proteins whose folding does not depend on vitamin C is impaired. However, even in these conditions, no overt UPR induction can be detected. Morphometric analyses reveal that the exocytic pathway does not increase relatively to the volume of the cell. Thus, differently from other cell types, abundant production is guaranteed by a coordinated increase of the cell size following arrest of proliferation.


Assuntos
Decídua , Endométrio , Decídua/metabolismo , Endométrio/metabolismo , Feminino , Humanos , Progesterona/metabolismo , Progesterona/farmacologia , Via Secretória , Células Estromais/metabolismo
12.
Nat Biotechnol ; 40(2): 235-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34635836

RESUMO

Recent efforts have succeeded in surveying open chromatin at the single-cell level, but high-throughput, single-cell assessment of heterochromatin and its underlying genomic determinants remains challenging. We engineered a hybrid transposase including the chromodomain (CD) of the heterochromatin protein-1α (HP-1α), which is involved in heterochromatin assembly and maintenance through its binding to trimethylation of the lysine 9 on histone 3 (H3K9me3), and developed a single-cell method, single-cell genome and epigenome by transposases sequencing (scGET-seq), that, unlike single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), comprehensively probes both open and closed chromatin and concomitantly records the underlying genomic sequences. We tested scGET-seq in cancer-derived organoids and human-derived xenograft (PDX) models and identified genetic events and plasticity-driven mechanisms contributing to cancer drug resistance. Next, building upon the differential enrichment of closed and open chromatin, we devised a method, Chromatin Velocity, that identifies the trajectories of epigenetic modifications at the single-cell level. Chromatin Velocity uncovered paths of epigenetic reorganization during stem cell reprogramming and identified key transcription factors driving these developmental processes. scGET-seq reveals the dynamics of genomic and epigenetic landscapes underlying any cellular processes.


Assuntos
Eucromatina , Heterocromatina , Cromatina/genética , Epigênese Genética/genética , Eucromatina/genética , Heterocromatina/genética , Humanos , Transposases/genética
13.
Curr Gene Ther ; 20(4): 259-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32811413

RESUMO

Progress of modern dentistry is accelerating at a spectacular speed in the scientific, technological and clinical areas. Practical examples are the advancement in the digital field, which has guaranteed an average level of prosthetic practices for all patients, as well as other scientific developments, including research on stem cell biology. Given their plasticity, defined as the ability to differentiate into specific cell lineages with a capacity of almost unlimited self-renewal and release of trophic/immunomodulatory factors, stem cells have gained significant scientific and commercial interest in the last 15 years. Stem cells that can be isolated from various tissues of the oral cavity have emerged as attractive sources for bone and dental regeneration, mainly due to their ease of accessibility. This review will present the current understanding of emerging conceptual and technological issues of the use of stem cells to treat bone and dental loss defects. In particular, we will focus on the clinical application of stem cells, either directly isolated from oral sources or in vitro reprogrammed from somatic cells (induced pluripotent stem cells). Research aimed at further unraveling stem cell plasticity will allow to identify optimal stem cell sources and characteristics, to develop novel regenerative tools in dentistry.


Assuntos
Odontologia , Medicina Regenerativa , Células-Tronco , Engenharia Tecidual , Linhagem da Célula , Polpa Dentária/citologia , Humanos , Regeneração , Alicerces Teciduais
14.
Front Aging Neurosci ; 11: 299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749696

RESUMO

Aging is associated with an exaggerated response to peripheral inflammatory challenges together with behavioral and cognitive deficits. Studies considering both age and sex remain limited, despite sex dimorphism of astrocytes and microglial cells is largely recognized. To fill this knowledge gap, we investigated the effect of a single intraperitoneal lipopolysaccharide (LPS) administration in adult and aged mice. We assessed the expression of different inflammatory mediators, and the microglial response through binding of [18F]-VC701 tracer to translocator protein (TSPO) receptors in the male and female brain. Aged female brain showed a higher pro-inflammatory response to LPS compared to adult female and to aged male, as revealed by ex vivo binding to TSPO receptors and pro-inflammatory mediator transcript levels. The highest astroglial reaction was observed in the brain of aged females. Differently to the other groups of animals, in aged males LPS challenge did not affect transcription of triggering receptor expressed on myeloid cells 2 (TREM2). In conclusion, our study shows that in the mouse's brain the neuro-inflammatory response to an acute peripheral insult is sex- and age-dependent. Moreover, our results might set the basis for further studies aimed at identifying sex-related targets involved in the modulation of the aberrant neuro-inflammatory response that characterizes aging. This knowledge could be relevant for the treatment of conditions such as delirium and dementia.

15.
Cells ; 8(9)2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500301

RESUMO

Efficiency and fidelity of protein secretion are achieved thanks to the presence of different steps, located sequentially in time and space along the secretory compartment, controlling protein folding and maturation. After entering into the endoplasmic reticulum (ER), secretory proteins attain their native structure thanks to specific chaperones and enzymes. Only correctly folded molecules are allowed by quality control (QC) mechanisms to leave the ER and proceed to downstream compartments. Proteins that cannot fold properly are instead retained in the ER to be finally destined to proteasomal degradation. Exiting from the ER requires, in most cases, the use of coated vesicles, departing at the ER exit sites, which will fuse with the Golgi compartment, thus releasing their cargoes. Protein accumulation in the ER can be caused by a too stringent QC or by ineffective transport: these situations could be deleterious for the organism, due to the loss of the secreted protein, and to the cell itself, because of abnormal increase of protein concentration in the ER. In both cases, diseases can arise. In this review, we will describe the pathophysiology of protein folding and transport between the ER and the Golgi compartment.


Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Transporte Proteico/fisiologia , Transporte Biológico , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Dobramento de Proteína , Proteínas/metabolismo
16.
Oxid Med Cell Longev ; 2018: 2378189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186542

RESUMO

A lipotoxic placental environment is recognized in maternal obesity, with increased inflammation and oxidative stress. These changes might alter mitochondrial function, with excessive production of reactive oxygen species, in a vicious cycle leading to placental dysfunction and impaired pregnancy outcomes. Here, we hypothesize that maternal pregestational body mass index (BMI) and glycemic levels can alter placental mitochondria. We measured mitochondrial DNA (mtDNA, real-time PCR) and morphology (electron microscopy) in placentas of forty-seven singleton pregnancies at elective cesarean section. Thirty-seven women were normoglycemic: twenty-one normal-weight women, NW, and sixteen obese women, OB/GDM(-). Ten obese women had gestational diabetes mellitus, OB/GDM(+). OB/GDM(-) presented higher mtDNA levels versus NW, suggesting increased mitochondrial biogenesis in the normoglycemic obese group. These mitochondria showed similar morphology to NW. On the contrary, in OB/GDM(+), mtDNA was not significantly increased versus NW. Nevertheless, mitochondria showed morphological abnormalities, indicating impaired functionality. The metabolic response of the placenta to impairment in obese pregnancies can possibly vary depending on several parameters, resulting in opposite strains acting when insulin resistance of GDM occurs in the obese environment, characterized by inflammation and oxidative stress. Therefore, mitochondrial alterations represent a feature of obese pregnancies with changes in placental energetics that possibly can affect pregnancy outcomes.


Assuntos
Hiperglicemia/complicações , Mitocôndrias/patologia , Obesidade/complicações , Placenta/fisiopatologia , Adulto , Feminino , Humanos , Gravidez
17.
Front Med (Lausanne) ; 4: 188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29167791

RESUMO

Frailty is a clinical syndrome defined by the age-related depletion of the individual's homeostatic reserves, determining an increased susceptibility to stressors and disproportionate exposure to negative health changes. The physiological systems that are involved in the determination of frailty are mutually interrelated, so that when decline starts in a given system, implications may also regard the other systems. Indeed, it has been shown that the number of abnormal systems is more predictive of frailty than those of the abnormalities in any particular system. Delirium is a transient neurocognitive disorder, characterized by an acute onset and fluctuating course, inattention, cognitive dysfunction, and behavioral abnormalities, that complicates one out of five hospital admissions. Delirium is independently associated with the same negative outcomes of frailty and, like frailty, its pathogenesis is usually multifactorial, depending on complex inter-relationships between predisposing and precipitating factors. By definition, a somatic cause should be identified, or at least suspected, to diagnose delirium. Delirium and frailty potentially share multiple pathophysiologic mechanisms and pathways, meaning that they could be thought of as the two sides to the same coin. This review aims at summarizing the existing evidence, referring both to human and animal models, to postulate that delirium may represent the cognitive harbinger of a state of frailty in older persons experiencing an acute clinical event.

18.
Front Surg ; 4: 40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791295

RESUMO

OBJECTIVE: To analyze the ovarian reserve via measurement of follicular density and anti-Müllerian hormone (AMH) in endometriosis patients participating to a clinical program of cortical ovarian cryopreservation. DESIGN: Retrospective analysis of serum AMH levels and prospective investigation of ovarian follicle number. SETTING: University Hospital. PATIENTS: Two hundred and two women with endometriosis and 400 controls. INTERVENTIONS: Blood samples and ovarian biopsies. MAIN OUTCOME MEASURES: Correlation of serum AMH levels and the number of non-growing follicles in the biopsied cortical tissues in endometriosis and control subjects, including age, type of AMH kit, and the laboratory performing the analysis as covariates. RESULTS: AMH levels were shown to decrease with age in untreated endometriosis patients (P < 1.0 × 10-5) but they were significantly lower in endometriosis compared to controls only in patients over 36 years old (P = 2.7 × 10-4). The AMH decrease was faster in endometriosis compared to controls (beta = 0.27, P = 4.0 × 10-4). Primordial follicle number decreased with the reduction of AMH levels in both cases and controls (beta = 0.3; P = 0.04). CONCLUSION: AMH is a reliable marker of ovarian reserve in endometriosis patients, and it can predict follicular density in women undergoing ovarian tissue cryopreservation.

19.
Antiviral Res ; 142: 16-20, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28286236

RESUMO

We investigated the potential anti-HIV-1 activity of the candidate microbicide 5-hydroxytyrosol (5-HT) both in primary human cervical tissue explants (CTE), established from tissues of women undergoing histerectomy, and in endometrium-associated leukocytes (EAL). CTE were exposed to either the laboratory-adapted HIV-1BaL or to primary viral isolates in the presence or absence of 5-HT or 3TC/lamivudine as control and were then monitored for 12 days in terms of HIV-1 p24 Gag antigen production in culture supernatants. HIV-1BaL replication was also evaluated in EAL by reverse transcriptase (RT) activity. The highest nontoxic concentrations of 5-HT (200 and 100 µM for CTE and EAL, respectively) exerted a significant inhibitory effect on virus replication in both primary cell systems. 5-HT did not cause significant alterations of the activation profile of CD4+ and CD8+ T cells, in terms of CD4, CCR5, CD25, CD69 and HLA-DR expression, although it decreased the percentage of CD38+CD8+ T cells. Thus, 5-HT deserves consideration as a potential candidate microbicide for preventing HIV-1 transmission or curtailing its replication in the female reproductive tract.


Assuntos
Colo do Útero/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Replicação Viral/efeitos dos fármacos , ADP-Ribosil Ciclase 1/metabolismo , Adulto , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colo do Útero/imunologia , Replicação do DNA/efeitos dos fármacos , Endométrio/virologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Antígenos HLA-DR/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lamivudina , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Álcool Feniletílico/antagonistas & inibidores , Receptores CCR5/metabolismo
20.
Sci Rep ; 7: 44286, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281680

RESUMO

Zika virus (ZIKV) is a recently re-emerged flavivirus transmitted to humans by mosquito bites but also from mother to fetus and by sexual intercourse. We here show that primary human endometrial stromal cells (HESC) are highly permissive to ZIKV infection and support its in vitro replication. ZIKV envelope expression was detected in the endoplasmic reticulum whereas double-stranded viral RNA colocalized with vimentin filaments to the perinuclear region. ZIKV productive infection also occurred in the human T-HESC cell line together with the induction of interferon-ß (IFN-ß) and of IFN-stimulated genes. Notably, in vitro decidualization of T-HESC with cyclic AMP and progesterone upregulated the cell surface expression of the ZIKV entry co-receptor AXL and boosted ZIKV replication by ca. 100-fold. Thus, endometrial stromal cells, particularly if decidualized, likely represent a crucial cell target of ZIKV reaching them, either via the uterine vasculature in the viremic phase of the infection or by sexual viral transmission, and a potential source of virus spreading to placental trophoblasts during pregnancy.


Assuntos
Endométrio/virologia , Células Estromais/virologia , Replicação Viral/fisiologia , Zika virus/fisiologia , Adulto , Animais , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Endométrio/citologia , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Replicação Viral/genética , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...