Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15892, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987409

RESUMO

Addressing an ever-increasing demand for graphene in recent years, simple, accessible, and effective graphene synthesis methods are essential. One of such methods is to use a highly oriented pyrolytic graphite (HOPG) to perform an electrochemical exfoliation. While this is one of the simplest and most cost-effective methods, the limited availability and price of HOPG hinders its usage. Our study proposed a simple and economical electrochemical exfoliation of pencil lead, producing graphene with properties comparable to that produced from HOPG. The electrical properties are determined by depositing graphene onto a screen-printed electrode. Graphene from pencil leads can achieve an electrical resistance as low as 1.86 kΩ, marking over 80% improvement in electrical performance compared to bare electrodes. This finding provides an alternative for the synthesis of graphene, increasing its availability and the cost-effectiveness as well as contributing towards a potential commercialization of the method in the future.

2.
Molecules ; 27(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36235233

RESUMO

This work demonstrates the ability of the Ion-Sensitive Field-Effect Transistor (ISFET)-based immunosensor to detect antibodies against the human leukocyte antigen (HLA) and the major histocompatibility complex class-I-related chain A (MICA). The sensing membrane of the ISFET devices was modified and functionalized using an APTES-GA strategy. Surface properties, including wettability, surface thickness, and surface topology, were assessed in each module of the modification process. The optimal concentrations of HLA and MICA proteins for the immobilization were 10 and 50 µg/mL. The dose-response curve showed a detection range of 1.98-40 µg/mL for anti-HLA and 5.17-40 µg/mL for anti-MICA. The analytical precision (%CV) was found to be 10.69% and 8.92% for anti-HLA and -MICA, respectively. Moreover, the electrical signal obtained from the irrelevant antibody was considerably different from that of the specific antibodies, indicating the specific binding of the relevant antibodies without noise interference. The sensitivity and specificity in the experimental setting were established for both antibodies (anti-HLA: sensitivity = 80.00%, specificity = 86.36%; anti-MICA: sensitivity = 86.67%, specificity = 88.89%). Our data reveal the potential of applying the ISFET-based immunosensor to the detection of relevant anti-HLA and -MICA antibodies, especially in the field of kidney transplantation.


Assuntos
Técnicas Biossensoriais , Transplante de Rim , Anticorpos , Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe II , Humanos , Imunoensaio , Íons
3.
J Colloid Interface Sci ; 560: 213-224, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31670019

RESUMO

The visible-light-driven WO3/BiOBr heterojunction was for the first time determined for its photocatalytic activity toward oxidative coupling of amines at room temperature using molecular oxygen as a green oxidant. The WO3/BiOBr heterojunction exhibits superior photocatalytic activity and photostability compared with pure BiOBr and WO3 due to an increased oxygen vacancy concentration, an effective separation of photogenerated electron-hole pairs and an efficient interfacial charge transfer. Additionally, the WO3/BiOBr also shows 2.3 and 41.1 times higher activity than that of TiO2 P25 and BiVO4 Alfa Aesar, respectively. Determination of energy band line-up indicates that the WO3/BiOBr is a type II-heterojunction where electron-hole pairs are efficiently separated. Mechanistic studies based on radical quenching experiment, EPR trapping study and Hammett plot reveal that the main reaction pathway is the electron transfer route mediated by superoxide radical. A possible surface reaction mechanism, the insightful information on the structure-activity relationship and the involvement of reactive oxygen species elucidated in this work lay an important background for the material design and encourage a further development of highly efficient photocatalysts toward organic fine chemical syntheses.

4.
Talanta ; 207: 120305, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594628

RESUMO

The 3-aminopropyltriethoxysilane (APTES) is a common method for biomolecule immobilization on silicon and silicon derivatives such as silicon nitride (Si3N4). However, there are many parameters which impact the efficiency of APTES modification such as APTES concentration and reaction time. Thus, various APTES concentrations (0.1%, 0.5%, 1%, 2%, 5%, and 10%) under different reaction times (15, 30, 60 and 120 min) were compared to achieve the optimal APTES modification condition which produced a thin and stable APTES layer on Si3N4 surface. The modified surfaces were characterized by contact angle (CA) measurement, Fourier transform infrared (FTIR) spectroscopy and spectroscopic ellipsometry to determine the wetting property, chemical bonding composition and surface thickness, respectively. In addition, biotin was used as a model to determine the effectiveness of APTES modification condition by coupling with glutaraldehyde (GA). The Alexa Flour 488 conjugated streptavidin was performed to visualize the presence of biotin using fluorescence microscopy due to the specifically binding between biotin and streptavidin. The atomic force microscopy (AFM) was utilized to determine the surface topology which was an indicator to demonstrate the agglomeration of APTES molecule. Moreover, ion sensitive field effect transistor (ISFET) was employed as a biosensor model to demonstrate the effect between surface thickness and sensitivity of biosensor. The results show that the APTES thickness is directly correlated to the APTES concentration and reaction time. Since the importance parameter for ISFET measurement is the distance between biomolecule and sensing membrane of ISFET, the thicker APTES layer negatively impacts the sensitivity of ISFET based biosensor because of the ion shielding effect. Therefore, these results would be valuable information for development of Si3N4 biosensor, especially ISFET based biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Propilaminas/química , Silanos/química , Compostos de Silício/química , Glutaral/química , Cinética , Propriedades de Superfície , Transistores Eletrônicos
5.
J Nanosci Nanotechnol ; 12(6): 4919-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905552

RESUMO

Needle-shaped pillars so-called "Black silicon" (B-Si) were fabricated by etching cleaned silicon wafer with fluorine-based deep reactive ion etching plasma. The B-Si pillar with the pillar size (a) and spacing (b) of 250 nm, and height (h) of 6.47 microm, coated with SiOxFy film had water contact angle (WCA) and ethylene glycol contact angle (ECA) of 159.8 degrees and 135.5 degrees, respectively. After coating the pillar with trichloro(1H,1H, 2H,2H-perfluorooctyl)silane (TPFS), the WCA and ECA increased to 166.2 degrees and 161.8 degrees, respectively. At the optimum etching condition, the B-Si pillar with the size a = 376 nm, b = 576 nm, h = 6.47microm, and the aspect ratio of 14.80 showed the WCA and ECA of 4.25 degrees and 14.77 degrees, respectively. After coating with the TPFS, liquid droplets ran across the sample's surface rapidly and the WCA and ECA could not be measured. Moreover, when the pillar height was increased twice, the WCA and ECA of the B-Si with and without the TPFS coating were greater than 170 degrees, indicating excellent water-and-oil repellency and can be applied for Micro-Electro-Mechanical Systems (MEMS).


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Gases em Plasma/química , Silício/química , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
6.
J Nanosci Nanotechnol ; 11(10): 8967-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22400288

RESUMO

Superhydrophobic surface can be fabricated by creating a rough surface at very fine scale and modify it with low-surface energy material. To obtain the optimum superhydrophobicity, the surface roughness must be maximized. To avoid the limitation of scaling down the pattern size by using an expensive lithography tools, the surface roughness factor (r) was increased by means of changing an asperity shape so as to increase its overall surface area. In this paper, the patterns of the asperities under studied were wave stripes, line stripes, cylindrical pillars, square pillars, pentagonal pillars, hexagonal pillars, and octagonal pillars. All pillar shapes were arranged in square arrays, hexagonal arrays, and continuous stripes. The asperities sizes and the pitches were varied from 1 to 5 microm with 10 microm of asperity height. Then the patterned surfaces were coated with polydimethylsiloxane mixed with 10 wt% dicumylperoxide. It was found that the stripe asperities can generate only hydrophobic surface with water contact angle (WCA) of 135 degrees to 145 degrees. The pillars with square and hexagonal arrays had the WCA of 149 degrees to 158 degrees. The pentagonal pillars with square and hexagonal arrays achieved the highest WCA with an average WCA of 156 degrees. It was evident that the pillar shape had significant effect on the superhydrophobicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA