Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2327371, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38444369

RESUMO

To date, an affordable, effective treatment for an HIV-1 cure remains only a concept with most "latency reversal" agents (LRAs) lacking specificity for the latent HIV-1 reservoir and failing in early clinical trials. We assessed HIV-1 latency reversal using a multivalent HIV-1-derived virus-like particle (HLP) to treat samples from 32 people living with HIV-1 (PLWH) in Uganda, US and Canada who initiated combined antiretroviral therapy (cART) during chronic infection. Even after 5-20 years on stable cART, HLP could target CD4+ T cells harbouring latent HIV-1 reservoir resulting in 100-fold more HIV-1 release into culture supernatant than by common recall antigens, and 1000-fold more than by chemotherapeutic LRAs. HLP induced release of a divergent and replication-competent HIV-1 population from PLWH on cART. These findings suggest HLP provides a targeted approach to reactivate the majority of latent HIV-1 proviruses among individuals infected with HIV-1.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Latência Viral , Linfócitos T CD4-Positivos , Canadá
2.
J Virol ; 96(14): e0185121, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862673

RESUMO

A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.


Assuntos
Proteína gp120 do Envelope de HIV , HIV-1 , Internalização do Vírus , Anticorpos Neutralizantes/metabolismo , Sítios de Ligação , Antígenos CD4/metabolismo , Farmacorresistência Viral/genética , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Maraviroc/farmacologia , Polimorfismo Genético , Ligação Proteica
3.
Immunology ; 165(3): 301-311, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34775601

RESUMO

Optimal immunogenicity from nucleic acid vaccines requires a balance of antigen expression that effectively engages the host immune system without generating a cellular response that rapidly destroys cells producing the antigen and thereby limiting vaccine antigen expression. We investigated the role of the cellular response on the expression and antigenicity of DNA vaccines using a plasmid DNA construct expressing luciferase. Repeated intramuscular administration led to diminished luciferase expression, suggesting a role for immune-mediated clearance of expression. To investigate the role of cell trafficking, we used the sphingosine 1-phosphate receptor (S1PR) modulator, FTY720 (Fingolimod), which traps lymphocytes within the lymphoid tissues. When lymphocyte trafficking was blocked with FTY720, DNA transgene expression was maintained at a constant level for a significantly extended time period. Both continuous and staggered administration of FTY720 prolonged transgene expression. However, blocking lymphocyte egress during primary transgene administration did not result in an increase of transgene expression during secondary administration. Interestingly, there was a disconnect between transgene expression and immunogenicity, as increasing expression by this approach did not enhance the overall immune response. Furthermore, when FTY720 was administered alongside a DNA vaccine expressing the HIV gp140 envelope antigen, there was a significant reduction in both antigen-specific antibody and T-cell responses. This indicates that the developing antigen-specific cellular response clears DNA vaccine expression but requires access to the site of expression in order to develop an effective immune response.


Assuntos
Cloridrato de Fingolimode , Vacinas de DNA , Cloridrato de Fingolimode/farmacologia , Fatores Imunológicos , Imunossupressores , Propilenoglicóis , Esfingosina , Linfócitos T , Vacinas de DNA/genética
4.
Retrovirology ; 18(1): 21, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344423

RESUMO

HIV-1 persists in infected individuals despite years of antiretroviral therapy (ART), due to the formation of a stable and long-lived latent viral reservoir. Early ART can reduce the latent reservoir and is associated with post-treatment control in people living with HIV (PLWH). However, even in post-treatment controllers, ART cessation after a period of time inevitably results in rebound of plasma viraemia, thus lifelong treatment for viral suppression is indicated. Due to the difficulties of sustained life-long treatment in the millions of PLWH worldwide, a cure is undeniably necessary. This requires an in-depth understanding of reservoir formation and dynamics. Differences exist in treatment guidelines and accessibility to treatment as well as social stigma between low- and-middle income countries (LMICs) and high-income countries. In addition, demographic differences exist in PLWH from different geographical regions such as infecting viral subtype and host genetics, which can contribute to differences in the viral reservoir between different populations. Here, we review topics relevant to HIV-1 cure research in LMICs, with a focus on sub-Saharan Africa, the region of the world bearing the greatest burden of HIV-1. We present a summary of ART in LMICs, highlighting challenges that may be experienced in implementing a HIV-1 cure therapeutic. Furthermore, we discuss current research on the HIV-1 latent reservoir in different populations, highlighting research in LMIC and gaps in the research that may facilitate a global cure. Finally, we discuss current experimental cure strategies in the context of their potential application in LMICs.


Assuntos
Terapia Antirretroviral de Alta Atividade/normas , Países em Desenvolvimento/estatística & dados numéricos , Reservatórios de Doenças/virologia , Infecções por HIV/tratamento farmacológico , Latência Viral/efeitos dos fármacos , África Subsaariana/epidemiologia , Terapia Antirretroviral de Alta Atividade/métodos , Terapia Antirretroviral de Alta Atividade/estatística & dados numéricos , Efeitos Psicossociais da Doença , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , HIV-1/genética , HIV-1/patogenicidade , Humanos
5.
EBioMedicine ; 59: 102853, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32654992

RESUMO

BACKGROUND: During combined anti-retroviral treatment, a latent HIV reservoir persists within resting memory CD4 T cells that initiates viral recrudescence upon treatment interruption. Strategies for HIV-1 cure have largely focused on latency reversing agents (LRAs) capable of reactivating and eliminating this viral reservoir. Previously investigated LRAs have largely failed to achieve a robust latency reversal sufficient for reduction of latent HIV pool or the potential of virus-free remission in the absence of treatment. METHODS: We utilize a polyvalent virus-like particle (VLP) formulation called Activator Vector (ACT-VEC) to 'shock' provirus into transcriptional activity. Ex vivo co-culture experiments were used to evaluate the efficacy of ACT-VEC in relation to other LRAs in individuals diagnosed and treated during the acute stage of infection. IFN-γ ELISpot, qRT-PCR and Illumina MiSeq were used to evaluate antigenicity, latency reversal, and diversity of induced virus respectively. FINDINGS: Using samples from HIV+ patients diagnosed and treated at acute/early infection, we demonstrate that ACT-VEC can reverse latency in HIV infected CD4 T cells to a greater extent than other major recall antigens as stimuli or even mitogens such as PMA/Iono. Furthermore, ACT-VEC activates more latent HIV-1 than clinically tested HDAC inhibitors or protein kinase C agonists. INTERPRETATION: Taken together, these results show that ACT-VEC can induce HIV reactivation from latently infected CD4 T cells collected from participants on first line combined antiretroviral therapy for at least two years after being diagnosed and treated at acute/early stage of infection. These findings could provide guidance to possible targeted cure strategies and treatments. FUNDING: NIH and CIHR.


Assuntos
Vetores Genéticos , Infecções por HIV/virologia , HIV-1/fisiologia , Ativação Viral , Latência Viral , Adulto , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Vetores Genéticos/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , RNA Viral , Carga Viral , Replicação Viral/genética , Adulto Jovem
6.
NPJ Vaccines ; 3: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29367885

RESUMO

First identified as the etiological agent behind Acquired Immunodeficiency Syndrome (AIDS) in the early 1980s, HIV-1 has continued to spread into a global pandemic and major public health concern. Despite the success of antiretroviral therapy at reducing HIV-1 viremia and preventing the dramatic CD4+ T-cell collapse, infected individuals remain HIV positive for life. Unfortunately, it is increasingly clear that natural immunity is not, and may never be, protective against this pathogen. Therefore, efficacious vaccine interventions, which can either prevent infection or eradicate the latent viral reservoir and effect cure, are a major medical priority. Here we describe the development of a safe vaccine platform, currently being utilized in on-going prophylactic and therapeutic preclinical studies and consisting of highly heterogeneous virus-like particle formulations that represent the virus diversity within infected individuals. These VLPs contain no 5'LTR, no functional integrase, and have a severely mutated stem loop 1-thereby preventing any potential reverse transcription, integration, and RNA packaging. Furthermore, we demonstrate that these VLPs are morphologically identical to wild-type virus with polyvalent Env in a functional form. Finally, we show that the VLPs are antigenic and capable of generating strong immune recall responses.

7.
AIDS Res Ther ; 14(1): 45, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28893280

RESUMO

Despite the significant success of combination anti-retroviral therapy to reduce HIV viremia and save lives, HIV-1 infection remains a lifelong infection that must be appropriately managed. Advances in the understanding of the HIV infection process and insights from vaccine development in other biomedical fields such as cancer, imaging, and genetic engineering have fueled rapid advancements in HIV cure research. In the last few years, several studies have focused on the development of "Kick and Kill" therapies to reverse HIV latency and kick start viral translational activity. This has been done with the aim that concomitant anti-retroviral treatment and the elicited immune responses will prevent de novo infections while eradicating productively infected cells. In this review, we describe our perspective on HIV cure and the new approaches we are undertaking to eradicate the established pro-viral reservoir.


Assuntos
Vacinas contra a AIDS/uso terapêutico , Infecções por HIV/terapia , HIV-1/imunologia , HIV-1/fisiologia , Latência Viral , Vacinas contra a AIDS/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Vacinação , Vacinas de Partículas Semelhantes a Vírus/imunologia , Viremia/imunologia , Viremia/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...