Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 3): 134406, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39097067

RESUMO

In this study 5-((2-((3-methoxy benzylidene)-amino)-phenyl)-diazenyl)-4,6-diphenyl pyrimidine-2(5H)-thione was synthesized. The pharmacological applications of pyrimidine analogs are restricted due to their poor pharmacokinetic properties. As a solution, a microbial exopolysaccharide (curdlan gum) was used to synthesize folic acid-conjugated pyrimidine-2(5H)-thione-encapsulated curdlan gum-PEGamine nanoparticles (FA-Py-CG-PEGamine NPs). The results of physicochemical properties revealed that the fabricated FA-Py-CG-PEGamine NPs were between 100 and 400 nm in size with a majorly spherical shaped, crystalline nature, and the encapsulation efficiency and loading capacity were 79.04 ± 0.79 %, and 8.12 ± 0.39 % respectively. The drug release rate was significantly higher at pH 5.4 (80.14 ± 0.79 %) compared to pH 7.2. The cytotoxic potential of FA-Py-CG-PEGamine NPs against MCF-7 cells potentially reduced the number of cells after 24 h with 42.27 µg × mL-1 as IC50 value. The higher intracellular accumulation of pyrimidine-2(5H)-thione in MCF-7 cells leads to apoptosis, observed by AO/EBr staining and flow cytometry analysis. The highest pyrimidine-2(5H)-thione internalization in MCF-7 cells may be due to folate conjugated on the surface of curdlan gum nanoparticles. Further, internalized pyrimidine-2(5H)-thione increases the intracellular ROS level, leading to apoptosis and inducing the decalin in mitochondrial membrane potential. These outcomes demonstrated that the FA-Py-CG-PEGamine NPs were specificity-targeting folate receptors on the plasma membranes of MCF-7 Cells.


Assuntos
Neoplasias da Mama , Receptores de Folato com Âncoras de GPI , Ácido Fólico , Nanopartículas , beta-Glucanas , Humanos , Ácido Fólico/química , Ácido Fólico/farmacologia , Nanopartículas/química , beta-Glucanas/química , beta-Glucanas/farmacologia , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Receptores de Folato com Âncoras de GPI/metabolismo , Feminino , Polietilenoglicóis/química , Pirimidinas/química , Pirimidinas/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Drug Res (Stuttg) ; 73(9): 491-505, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890514

RESUMO

Eukaryotic organisms contain an enzyme family called poly (ADP-ribose) polymerases (PARPs), which is responsible for the poly (ADP-ribosylation) of DNA-binding proteins. PARPs are members of the cell signaling enzyme class. PARP-1, the most common isoform of the PARP family, is responsible for more than 90% of the tasks carried out by the PARP family as a whole. A superfamily consisting of 18 PARPs has been found. In order to synthesize polymers of ADP-ribose (PAR) and nicotinamide, the DNA damage nick monitor PARP-1 requires NAD+ as a substrate. The capability of PARP-1 activation to boost the transcription of proinflammatory genes, its ability to deplete cellular energy pools, which leads to cell malfunction and necrosis, and its involvement as a component in the process of DNA repair are the three consequences of PARP-1 activation that are of particular significance in the process of developing new drugs. As a result, the pharmacological reduction of PARP-1 may result in an increase in the cytotoxicity toward cancer cells.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Ribose , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Necrose , Transdução de Sinais
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2571-2586, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37022437

RESUMO

Receptor-mediated drug delivery systems are a promising tool for targeting malignant cells to suppress/inhibit the malignancy without disturbing healthy cells. Protein-based nanocarrier systems possess numerous advantages for the delivery of variety of chemotherapeutics, including therapeutic peptides and genes. In the present work, glucose-conjugated camptothecin-loaded glutenin nanoparticles (Glu-CPT-glutenin NPs) were fabricated to deliver camptothecin to MCF-7 cells via GLUT-1 transporter protein. Initially, Glu-conjugated glutenin polymer was successfully synthesized through reductive amination reaction, and this was confirmed by FTIR and 13C-NMR. Then, camptothecin (CPT) was loaded into Glu-conjugated glutenin polymer forming Glu-CPT-glutenin NPs. The nanoparticles were studied for their drug releasing capacity, morphological shape, size, physical nature, and zeta potential. The fabricated Glu-CPT-glutenin NPs were found to be spherical in shape and amorphous in nature with 200-nm size range and a zeta potential of - 30 mV. Furthermore, MTT assay using Glu-CPT-glutenin NPs confirmed concentration-dependent cytotoxicity against MCF-7 cells after 24-h treatment, and IC50 was found to be 18.23 µg mL-1. In vitro cellular uptake study demonstrated that the Glu-CPT-glutenin NPs had enhanced endocytosis and delivered CPT in MCF-7 cells. A typical apoptotic morphological change of condensed nuclei and distorted membrane bodies was found after treatment with IC50 concentration of NPs. The released CPT from NPs also targeted mitochondria of MCF-7 cells, significantly increasing the level of reactive oxygen species and causing the damage of mitochondrial membrane integrity. These outcomes confirmed that the wheat glutenin can positively serve as a significant delivery vehicle and enhance the anticancer potential of this drug.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Camptotecina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Células MCF-7 , Polímeros/química , Polímeros/metabolismo , Linhagem Celular Tumoral
4.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557944

RESUMO

Endophytic fungi are a diverse group of microorganisms that colonize the inter- or intracellular spaces of plants and exhibit mutual benefits. Their interactions with the host plant and other microbiomes are multidimensional and play a crucial role in the production of secondary metabolites. We screened bioactive compounds present in the extracts of Aspergillus flavus, an endophytic fungus isolated from the roots of the medicinal grass Cynodon dactylon, for its anticancer potential. An in vitro analysis of the Ethyl acetate extract from A. flavus showed significant cytostatic effects (IC50: 16.25 µg/mL) against breast cancer cells (MCF-7). A morphological analysis of the cells and a flow cytometry of the cells with annexin V/Propidium Iodide suggested that the extract induced apoptosis in the MCF-7 cells. The extract of A. flavus increased reactive oxygen species (ROS) generation and caused a loss of mitochondrial membrane potential in MCF-7 cells. To identify the metabolites that might be responsible for the anticancer effect, the extract was subjected to a gas chromatography-mass spectrometry (GC-MS) analysis. Interestingly, nine phytochemicals that induced cytotoxicity in the breast cancer cell line were found in the extract. The in silico molecular docking and molecular dynamics simulation studies revealed that two compounds, 2,4,7-trinitrofluorenone and 3α, 5 α-cyclo-ergosta-7,9(11), 22t-triene-6beta-ol exhibited significant binding affinities (-9.20, and -9.50 Kcal/mol, respectively) against Bcl-2, along with binding stability and intermolecular interactions of its ligand-Bcl-2 complexes. Overall, the study found that the endophytic A. flavus from C. dactylon contains plant-like bioactive compounds that have a promising effect in breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Aspergillus flavus/metabolismo , Cynodon/metabolismo , Neoplasias da Mama/tratamento farmacológico , Simulação de Acoplamento Molecular , Fungos/química , Antineoplásicos/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-36475343

RESUMO

BACKGROUND: We synthesized a series of novel amide derivatives of (5-((2-chloropyridin-4-yl)oxy)-3-phenyl-1H-pyrazol-1-yl)-2-(4-substituted phenyl)-N,N-dimethylethen-1-amine [5a-5r] and assessed for their antiproliferative activity against human breast cancer cell line MCF7 by using MTT assay. Graph Theoretical analysis, in silico modeling, molecular dynamic studies, and ADME profile were screened for the synthesized compounds. Based on the observed report, the significant compounds were chosen for their anticancer activity. Graph Theoretical analysis, in silico modeling and molecular dynamic studies of (5-((2-chloropyridin-4-yl)oxy)-3-phenyl-1H-pyrazol-1-yl)-2-(4-substitutedphenyl)-N,N-dimethylethen-1-amine derivatives for the treatment of breast cancer. METHODS: 5-((2-chloropyridin-4-yl)oxy) (2-phenyl-1H-pyrazol-1-yl)-3-phenyl-1H-pyrazol-1-yl)-3-phenyl-1H-pyrazol-1- (4-substituted phenyl) -N,N-dimethylethen-1-amine [5a-5r] was synthesized using 2-bromo-1-phenylethanone and (5-(2-chloropyridin-4-yloxy)-3-phenyl-1H-pyrazol-1-yl)-N,N-dimethylmethanamine with different aromatic aldehydes and their characterization studies were evaluated by IR, NMR, and mass spectral analysis. RESULTS: The compound 2-(4-methylphenyl)-1-(5-((2-chloropyridin-4-yl)oxy)-3-phenyl-1H-pyrazol-1-yl)-N,N-dimethylethen-1-amine 5a and 2-(2-methylphenyl)-1-(5-((2-chloro pyridin-4-yl)oxy)-3-phenyl-1H-pyrazol-1-yl)-N,N-dimethylethen-1-amine 5c in the amide part exhibited promising cytotoxic activity against all cell lines with IC50 values of 3.3 mM for MCF-7 cells, and produced dramatic cell cycle arrest at EGFR phase as an indicator of apoptotic cell death induction. CONCLUSION: Based on their high potency in the cellular environment, these straightforward pyrazole-3-carboxamide derivatives may possess the potential to design more potent compounds for intervention with cancer cell proliferation.

6.
Molecules ; 27(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744923

RESUMO

Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5-ligand complexes. Four bioactive molecules (Bufadienolide (-12.30 kcal mol-1), Stigmasterol (-11.40 kcal mol-1), Isovitexin (-11.20 kcal mol-1), and Apigetrin (-11.20 kcal mol-1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (-9.80 kcal mol-1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.


Assuntos
Afrodisíacos , Disfunção Erétil , Mimosa , Afrodisíacos/uso terapêutico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Disfunção Erétil/tratamento farmacológico , Humanos , Masculino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Fosfodiesterase 5/química
7.
Bioimpacts ; 12(6): 487-499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644543

RESUMO

Introduction: Parkinson's disease (PD) is a chronic, devastating neurodegenerative disorder marked by the death of dopaminergic neurons in the midbrain's substantia nigra pars compacta (Snpc). In alpha-synuclein (α-Syn) self-aggregation, the existence of intracytoplasmic inclusion bodies called Lewy bodies (LBs) and Lewy neurites (LNs) causes PD, which is a cause of neuronal death. Methods: The present study is aimed at finding potential bioactive compounds from Cynodon dectylon that can degrade α-Syn aggregation in the brain, through in silico molecular docking investigations. Graph theoretical network analysis was used to identify the bioactive compounds that target α-Syn and decipher their network as a graph. From the data repository, twenty-nine bioactive chemicals from C. dactylon were chosen and their structures were retrieved from Pubchem. On the basis of their docking scores and binding energies, significant compounds were chosen for future investigation. The in silico prediction of chosen compounds, and their pharmacokinetic and physicochemical parameters were utilized to confirm their drug-likeness profile. Results: During molecular docking investigation the bioactive compounds vitexin (-7.3 kcal.mol-1) and homoorientin (-7.1 kcal.mol-1) showed significant binding energy against the α-Syn target protein. A computer investigation of molecular dynamics simulation study verifies the stability of the α-Syn-ligand complex. The intermolecular interactions assessed by the dynamic conditions indicate that the bioactive compound vitexin has the potency to prevent α-Syn aggregation. Conclusion: Interestingly, the observed results indicate that vitexin is a potential lead compound against α-Syn aggregation, and in vitro and in vivo studies are warranted to confirm the promising therapeutic capability.

8.
Sci Rep ; 11(1): 21488, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728718

RESUMO

Spice-rich recipes are referred to as "functional foods" because they include a variety of bioactive chemicals that have health-promoting properties, in addition to their nutritional value. Using pharmacoinformatics-based analysis, we explored the relevance of bioactive chemicals found in Rasam (a South Indian cuisine) against oxidative stress-induced human malignancies. The Rasam is composed of twelve main ingredients, each of which contains a variety of bioactive chemicals. Sixty-six bioactive compounds were found from these ingredients, and their structures were downloaded from Pubchem. To find the right target via graph theoretical analysis (mitogen-activated protein kinase 6 (MAPK6)) and decipher their signaling route, a network was built. Sixty-six bioactive compounds were used for in silico molecular docking study against MAPK6 and compared with known MAPK6 inhibitor drug (PD-173955). The top four compounds were chosen for further study based on their docking scores and binding energies. In silico analysis predicted ADMET and physicochemical properties of the selected compounds and were used to assess their drug-likeness. Molecular dynamics (MD) simulation modelling methodology was also used to analyse the effectiveness and safety profile of selected bioactive chemicals based on the docking score, as well as to assess the stability of the MAPK6-ligand complex. Surprisingly, the discovered docking scores against MAPK6 revealed that the selected bioactive chemicals exhibit varying binding ability ranges between - 3.5 and - 10.6 kcal mol-1. MD simulation validated the stability of four chemicals at the MAPK6 binding pockets, including Assafoetidinol A (ASA), Naringin (NAR), Rutin (RUT), and Tomatine (TOM). According to the results obtained, fifty of the sixty-six compounds showed higher binding energy (- 6.1 to - 10.6 kcal mol-1), and four of these compounds may be used as lead compounds to protect cells against oxidative stress-induced human malignancies.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional/métodos , Proteína Quinase 6 Ativada por Mitógeno/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/farmacologia , Humanos , Estresse Oxidativo
9.
Nanotechnology ; 32(9): 095101, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33113518

RESUMO

Lower doses of capsaicin (8-methyl-N-vanillyl-6-nonenamide) have the potential to serve as an anticancer drug, however, due to its pungency, irritant effect, poor water solubility and high distribution volume often linked to various off-target effects, its therapeutic use is limited. This study aimed to determine the biodistribution and anticancer efficacy of capsaicin loaded solid lipid nanoparticles (SLNs) in human hepatocellular carcinoma in vitro. In this study, SLNs of stearic acid loaded with capsaicin was formulated by the solvent evaporation-emulsification technique and were instantly characterized for their encapsulation efficiency, morphology, loading capacity, stability, particle size, charge and in vitro drug release profile. Synthesized SLNs were predominantly spherical, 80 nm diameter particles that proved to be biocompatible with good stability in aqueous conditions. In vivo biodistribution studies of the formulated SLNs showed that 48 h after injection in the lateral tail vein, up to 15% of the cells in the liver, 1.04% of the cells in the spleen, 3.05% of the cells in the kidneys, 3.76% of the cells in the heart, 1.31% of the cells in the lungs and 0% of the cells in the brain of rats were determined. Molecular docking studies against the identified targets in HepG2 cells showed that the capsaicin is able to bind Abelson tyrosine-protein kinase, c-Src kinase, p38 MAP kinase and VEGF-receptor. Molecular dynamic simulation showed that capsaicin-VEGF receptor complex is highly stable at 50 nano seconds. The IC50 of capsaicin loaded SLNs in HepG2 cells in vitro was 21.36 µg × ml-1. These findings suggest that capsaicin loaded SLNs are stable in circulation for a period up to 3 d, providing a controlled release of loaded capsaicin and enhanced anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Capsaicina/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Proteína Tirosina Quinase CSK/metabolismo , Capsaicina/síntese química , Capsaicina/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Concentração Inibidora 50 , Lipídeos , Neoplasias Hepáticas/tratamento farmacológico , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanopartículas , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-abl/metabolismo , Ratos , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Solubilidade , Distribuição Tecidual , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 394(4): 735-749, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33156389

RESUMO

The primary requirement for curing cancer is the delivery of essential drug load at the cancer microenvironment with therapeutic efficacy. Considering this, the present study aims to formulate "Rutin"-encapsulated solid lipid nanoparticles (SLNs) for effective brain delivery across the blood-brain barrier (BBB). Rutin-loaded SLNs were fabricated by oil-in-water microemulsion technique and were characterized for their physicochemical properties. The in vivo biodistribution study of rutin-loaded SLNs was studied using Rattus norvegicus rats. Subsequently, in silico molecular docking and dynamic calculations were performed to examine the binding affinity as well as stability of rutin at the active site of target protein "epidermal growth factor receptor (EGFR)." Formulated rutin-loaded SLNs were predominantly spherical in shape with an average particle diameter of 100 nm. Additionally, the biocompatibility and stability have been proved in vitro. The presence and biodistribution of rutin in vivo after 54 h of injection were observed as 15.23 ± 0.32% in the brain, 8.68 ± 0.63% in the heart, 4.78 ± 0.28% in the kidney, 5.04 ± 0.37% in the liver, 0.92 ± 0.04% in the lung, and 11.52 ± 0.65% in the spleen, respectively. Molecular docking results revealed the higher binding energy of - 150.973 kJ/mol of rutin with EGFR. Molecular dynamic simulation studies demonstrated that rutin with EGFR receptor complex was highly stable at 30 ns. The observed results exemplified that the formulated rutin-loaded SLNs were stable in circulation for a period up to 5 days. Thus, rutin-encapsulated SLN formulations can be used as a promising vector to target tumors across BBB. Graphical abstract.


Assuntos
Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Rutina/administração & dosagem , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Liberação Controlada de Fármacos , Receptores ErbB/metabolismo , Lipídeos/química , Lipídeos/farmacocinética , Masculino , Simulação de Acoplamento Molecular , Nanopartículas/química , Neurofibromina 1/metabolismo , Ratos , Rutina/química , Rutina/farmacocinética , Distribuição Tecidual , Proteínas ras/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1963-1976, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32468137

RESUMO

Phytochemical mediated synthesis of nanoparticles has gained great interest in the field of cancer therapeutics. We attempted a simple and stable synthesis of gold nanoparticles (AuNPs) with Myricetin (Myr) adopting ultrasound-assisted method. Further, we evaluated anticancer activity of the synthesized nanoparticles. The physico-chemical properties of biosynthesized Myr-AuNPs were characterized by UV-visible spectrophotometer, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and particle size analysis. The study reports of Myr-AuNPs showed spherical-shaped particles with a size of < 50 nm. Stability of the particles was increased in various physiological media. Furthermore, the graph theoretical network analysis of Myr-AuNPs indicated that the probable binding with the mTOR is an effective target for breast cancer cells. In silico molecular docking study of Myr-AuNPs in human mTOR kinase was found to be strong binding. The IC50 value of Myr-AuNPs was calculated as 13 µg mL-1 against MCF-7 cell line. The AO/EB and DAPI stainings confirmed the anticancer activity by Myr-AuNPs-treated cells showed a good proportion of dead cells evidenced with formation of pro-apoptotic bodies. In addition, Myr-AuNPs exhibited depolarization of mitochondrial membrane potential and production of reactive oxygen species. This study proves that Myr-AuNPs holds great promise to use against breast cancer as a potent anticancer drug. Graphical abstract A schematic representation for the biosynthesis of Myr-AuNPs.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Neoplasias da Mama , Flavonoides/síntese química , Ouro/química , Nanopartículas Metálicas/química , Ondas Ultrassônicas , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Feminino , Flavonoides/administração & dosagem , Ouro/administração & dosagem , Humanos , Células MCF-7 , Nanopartículas Metálicas/administração & dosagem
12.
3 Biotech ; 10(3): 136, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32158632

RESUMO

This study aimed to formulate and characterize the folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii to enhance the anticancer activity. Twenty valued bioactive compounds (3-hydroxy benzoicacid, gallicacid, chlorogenicacid, cinnamicacid, artemiseole, hydrazine carbothioamide, etc.,) are confirmed from methanol extract of K. alvarezii using analytical techniques like HPLC and GC-MS. The delivery of bioactive compounds of K. alvarezii via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. FR targeted PEGylated liposome was constructed by modified thin-film hydration technique using FA-PEG-DSPE/cholesterol/DSPC (5:40:55) and bioactive compounds of K. alvarezii was encapsulated. Their morphology, size, shape, physiological stability and drug release kinetics were studied. The study reports of K. alvarezii extract-encapsulated PEGylated liposome showed spherical shaped particles with amorphous in nature. The mean diameter of K. alvarezii extract-encapsulated PEGylated and FA-conjugated PEGylated liposomes was found to be 110 ± 6 nm and 140 ± 5 nm, respectively. Based on the stability studies, it could be confirmed that FA-conjugated PEGylated liposome was highly stable in various physiological buffer medium. FA-conjugated PEGylated liposome can steadily release the bioactive compounds of K. alvarezii extract in acidic medium (pH 5.4). MTT assay demonstrated the concentration-dependent cytotoxicity against MCF-7 cells after 24 h with IC50 of 81 µg/mL. Also, PEGylated liposome enhanced the delivery of K. alvarezii extract in MCF-7 cells. After treatment, typical apoptotic morphology of condensed nuclei and distorted membrane bodies was picturized. Additionally, PEGylated liposome targets the mitochondria of MCF-7 cells and significantly increased the level of ROS and contributes to the damage of mitochondrial transmembrane potential. Hence, PEGylated liposome could positively deliver the bioactive compounds of K. alvarezii extract into FR-positive breast cancer cells (MCF-7) and exhibit great potential in anticancer therapy.

13.
Nanotechnology ; 31(15): 155102, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31775133

RESUMO

Targeted drug delivery systems are a promising field of research. Nano-engineered material-mediated drug delivery possesses remarkable potential for the treatment of various malignancies. Here, folic acid (FA)-conjugated bovine serum albumin (BSA) nanoparticles (NPs) were used to encapsulate myricetin (Myr). Subsequently, the delivery of Myr via naturally overexpressed folate receptor (FR) to FR-positive breast cancer cells was studied. Myr-loaded BSA NPs were assembled by modified desolvation cross-linking technique. An FA-conjugated carrier, N-hydroxysuccinimide (NHS)-FA ester, was successfully synthesized. Its functional and structural characteristics were confirmed by ultraviolet, Fourier-transform infrared, and proton nuclear magnetic resonance spectroscopy. Biocompatible FA-conjugated, Myr-loaded BSA NPs (FA-Myr-BSA NPs) were successfully formulated using a carbonate/bicarbonate buffer. Their morphology, size, shape, physiological stability, and drug release kinetics were studied. Molecular docking studies revealed that FA-Myr-BSA NPs readily bound non-covalently to folate receptors and facilitated active drug endocytosis. FA-Myr-BSA NPs could trigger fast release of Myr in an acidic medium (pH 5.4), and showed high biocompatibility in a physiological medium. FA-Myr-BSA NPs effectively decreased the viability of MCF-7 cells after 24 h with 72.45 µg ml-1 IC50 value. In addition, FA-Myr-BSA NPs enhanced the uptake of Myr in MCF-7 cells. After incubation, a typical apoptotic morphology of condensed nuclei and distorted membrane bodies was observed. The NPs also targeted mitochondria of MCF-7 cells, significantly increasing reactive oxygen species release and contributing to the loss of mitochondrial membrane integrity. The observed results confirm that the newly developed FA-Myr-BSA NPs can serve as a potential carrier for Myr to increase the anticancer activity of this chemotherapeutic.


Assuntos
Flavonoides/farmacologia , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Soroalbumina Bovina/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Flavonoides/química , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Nanopartículas
14.
Anticancer Agents Med Chem ; 19(16): 1966-1982, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267878

RESUMO

OBJECTIVE: Site-specific and toxic-free drug delivery, is an interesting area of research. Nanoengineered drug delivery systems possess a remarkable potential for effective treatment of various types of cancers. METHODS: In this study, novel Folic Acid (FA) conjugated keratin nanoparticles (NPs) were assembled with encapsulation and delivery of Rutin (Rt) into breast cancer cells through the overexpressed folate receptor. The biocompatible, Rt encapsulated FA conjugated keratin NPs (FA@Ker NPs) were successfully formulated by a modified precipitation technique. Their morphological shape and size, size distribution, stability, and physical nature were characterized and confirmed. The drug (Rt) encapsulation efficiency, loading capacity and release kinetics were also studied. RESULTS: The observed results of molecular docking and density functionality theory of active drug (Rt) showed a strong interaction and non-covalent binding of the folate receptor and facilitation of endocytosis in breast cancer cells. Further, in vitro cytotoxic effect of FA@Ker NPs was screened against MCF-7 cancer cells, at 55.2 µg/mL of NPs and found to display 50% of cell death at 24h. Moreover, the NPs enhanced the uptake of Rt in MCF-7 cells, and the apoptotic effect of condensed nuclei and distorted membrane bodies was observed. Also, NPs entered into the mitochondria of MCF-7 cells and significantly increased the level of ROS which led to cell death. CONCLUSION: The developed FA@Ker NPs might be a promising way to enhance anti-cancer activity without disturbing normal healthy cells.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Desenho de Fármacos , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/química , Queratinas/química , Nanopartículas/química , Rutina/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Liberação Controlada de Fármacos , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Rutina/administração & dosagem
15.
Drug Dev Res ; 80(3): 368-385, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30609096

RESUMO

Hit, Lead & Candidate Discovery A variety of novel 2-(methyl/phenyl)-3-(4-(5-substituted-1,3,4-oxadiazol-2-yl)phenyl) quinazolin-4(3H)-ones have been synthesized by treating 3-(4-(5-mercapto-1,3,4-oxadiazol-2-yl)phenyl)-2-(methyl/phenyl)-quinazolin-4(3H)-one with a variety of secondary amines. Graph theoretical analysis was used in identification of drug target that is, NMDAR (N-methyl-d-aspartate receptors). The observed reports of in silico modeling and ligand based toxicity, metabolism prediction studies were encouraging us to synthesize of title compounds and evaluate their antiepileptic effects. The title compounds were tested for its antiepileptic potency by MES and scPTZ model. Rotorod test is used to assess its neurotoxicity. In the preliminary test it was found that in MES test, analogs 6d, 6e, 6f, and 6l were potent; whereas in scPTZ test analogs 6d, 6e, 6f, and 6k displayed potent antiepileptic activity. Additionally these five derivatives were tested in rats orally at a dose of 30 mg/kg and found that compounds 2-methyl-3-(4-(5-morpholino-1,3,4-oxadiazol-2-yl)phenyl)quinazolin-4(3H)-one 6e and 2-methyl-3-(4-(5-(piperidin-1-yl)-1,3,4-oxadiazol-2-yl)phenyl)quinazolin-4(3H)-one 6f exhibited superior activity than reference Phenytoin. In MES test, these derivatives 6e and 6f showed activity at 30 mg/kg i.p. dose after 0.5 hr and 4.0 hr. In scPTZ test these derivatives 6e and 6f showed activity at 100 and 300 mg/kg i.p. dose after 0.5 hr and 4.0 hr, respectively.


Assuntos
Anticonvulsivantes , Modelos Teóricos , Quinazolinonas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Simulação por Computador , Masculino , Camundongos , Quinazolinonas/síntese química , Quinazolinonas/farmacocinética , Quinazolinonas/uso terapêutico , Quinazolinonas/toxicidade , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Teste de Desempenho do Rota-Rod , Convulsões/tratamento farmacológico
16.
Drug Dev Res ; 79(6): 260-274, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30244475

RESUMO

Hit, Lead & Candidate Discovery A series of 2-(2-substituted benzylidenehydrazinyl-2-oxopropyl)-3-(4-[4-oxo-2-phenylthiazolo din-3-yl]phenyl)quinazolin-4(3H)-one 7a-7l were synthesized and characterized by IR, 1 H-NMR, 13 C-NMR, mass spectroscopy and elemental analyses. In this present study, the density functionality theory was performed to identify drug stability. Further we introduced graph theoretical analysis by utilised Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Cytoscape software to identify drug target. Based on the observed drug target insilico modeling was executed to know effective drug. The antiepileptic effects of title compounds were evaluated by using MES and subcutaneous pentylenetetrazole (scPTZ) test. Acute neurological toxicity of title compounds was studied by using standardized rotorod test. After 0.5 hr of period many of the compounds showed anticonvulsant activity at MES or scPTZ test. Comparison of the biological activity of test compounds with its chemical structures indicates that, compounds possessing electron donating group exhibited superior activity than the analogs having electron withdrawing moieties. Among the electron donating group tested, amino derivative exhibited good activity than rest of derivatives. From the study it was concluded that, the compound 7j was established as very potent compared with rest of the compounds and standard drugs subjected to biological studies. Thus the compound 2-(2-[4-aminobenzylidene]hydrazinyl-2-oxopropyl)-3-(4-[4-oxo-2-phenylthiazolidin-3-yl]phenyl) quinazolin-4(3H)-one (7j) came out as pilot derivative without any neurotoxicity with a wide spectrum of antiepileptic activity. HIGHLIGHTS: The performed work is having great significance in terms of Graph theoretical analysis used to identify drug target In silico modeling used to identify designed drug interaction with identify target Density functionality studies used to identify synthesized compound energy band gap which is correlate with enhancement of its biological activity Antiepileptic effects of entire synthesized quinazolinone scaffolds were evaluated by MES and scPTZ test 2-(2-[4-aminobenzylidene]hydrazinyl-2-oxopropyl)-3-(4-[4-oxo-2-phenylthiazolidin-3-yl]phenyl) quinazolin-4(3H)-one (7j) was established as very potent compared to the rest of the compounds and standard drugs which were subjected to biological studies.


Assuntos
Anticonvulsivantes/química , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Desenho de Fármacos , Animais , Simulação por Computador , Epilepsia/tratamento farmacológico , Humanos , Camundongos , Simulação de Acoplamento Molecular , Quinazolinonas , Ratos , Relação Estrutura-Atividade , Tiazóis
17.
Anticancer Agents Med Chem ; 18(13): 1900-1918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956638

RESUMO

PURPOSE: To investigate N-succinyl chitosan nanoparticles (NSC NPs) encapsulation with Dunaliella bardawil (D. bardawil) biomass for high utilization enhanced effectiveness and least side effects for anticancer activity. METHODS: The potential bioactive compounds from D. bardawil biomass were encapsulated NSC NPs by ionotropic gelation method and to characterize its molecular shape, particle size, stability and polydispersity index using FTIR, XRD, SEM, TEM and Zetasize Nano analyzer. Signaling pathway analysis, molecular docking study and in vitro anticancer screening were performed on chosen H-RasP21, 721P and liver cancer cell lines (HepG2), respectively. RESULTS: The D. bardawil biomass majorly contains 6 bioactive compounds such as ß-carotene, lutein, zeaxanthin, phytoene, canthaxanthin, and phytofluene were identified by LC-MS. The D. bardawil biomass encapsulated NSC NPs showed an average particle size of 80±5.6 nm in spherical shape, crystalline nature, zeta potential of -32±2.7 mV and polydispersity index of 0.51±0.02. Interestingly, the identified target using graph theoretical signaling pathway analysis and molecular docking study showed strong interaction of NSC NPs in binding pockets of H-RasP21 protooncogene. At 50µg/mL, NPs displayed 95.60% cytotoxicity in HepG2 cell line. The apoptotic cell cycle analysis showed cell death for 24 h and 48 h representing 13.13% and 47.04%, respectively. CONCLUSION: The highly cross-linked, biocompatible, biodegradable, nontoxic NSC NPs promising carrier for delivery of bioactive molecules present in the D. bardawil biomass was found to be actively involved in deregulation of cellular growth in targeted cancer cells. Thus active NPs serve as a novel nanodrug to enhance the controlled; site specific drug delivery in the management of cancer.


Assuntos
Antineoplásicos/farmacologia , Quitosana/farmacologia , Clorófitas/química , Simulação por Computador , Desenho de Fármacos , Simulação de Acoplamento Molecular , Nanopartículas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Biomassa , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Quitosana/isolamento & purificação , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Conformação Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Biomed Mater ; 13(4): 045012, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29727301

RESUMO

The aim of the present study is to develop keratin nanoparticles (NPs) encapsulated in Dunaliella bardawil (D. bardawil) biomass, in order to improve their glucose uptake in 3T3-L1 adipocytes. The graph theoretical approach has provided a platform to identify PTP-1B and AMPK as an effective drug target. Docking results of the active constituents of D. bardawil showed a strong interaction with binding pockets of identified PTP-1B and AMPK. The encapsulation efficiency, drug release, stability and physicochemical properties of prepared NPs were analyzed using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry, x-ray diffraction, scanning and tunneling electron microscopy, and Zeta size analysis. Further, encapsulated keratin NPs were screened for their in vitro cytotoxicity and glucose uptake studies. The study report of biomass encapsulated keratin NPs showed no toxicity at lower concentrations and 81.23 ± 6.56% cellular viability at 30 µg in 3T3-L1 adipocytes. Moreover, the effect of keratin NPs (30 µg) on glucose utilization (58.56 ± 4.54%) was higher than that of Metformin (10 µM) or insulin (10 µM). The observed higher level of glucose utilization may lead to the development of novel ways to enhance biological activities.


Assuntos
Biomassa , Clorófitas/química , Glucose/química , Queratinas/química , Nanopartículas/química , Células 3T3-L1 , Animais , Simulação por Computador , Cabelo , Humanos , Insulina/química , Masculino , Metformina/química , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Tunelamento , Simulação de Acoplamento Molecular , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
In Vitro Cell Dev Biol Anim ; 53(6): 483-493, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28342023

RESUMO

This study aims mainly to provide an insight and understanding of the effect of glucose utilization efficiency of biogenic gold nanoparticles (GNPs) synthesized through the mediation of Marsilea quadrifolia (M. quadrifolia) methanol extract on 3T3-L1 adipocytes. The biosynthesized GNPs were characterized by UV visible spectrophotometry and FTIR. Simultaneously, the nature, stability, and morphological characteristics were analyzed by XRD, TG-DTA, SEM-EDS, HRTEM, and SAED. The results of characterization studies were used to assess the properties of GNPs. The in vitro cytotoxicity screening indicates that 100 µM of biogenic GNPs were displayed 71.23 ± 1.56% of cellular viability in 3T3-L1 adipocyte cells. Subsequently, increased glucose utilization of biosynthesized GNPs based on a dose-dependent manner on 3T3-L1 has also been demonstrated. The effect of GNPs (30 µg) on glucose uptake was higher than that of insulin and metformin. Moreover, the observed results clearly highlight that the biogenic GNPs have higher efficiency of glucose utilization and cellular viability in 3T3-L1 adipocytes with lower toxicity.


Assuntos
Adipócitos/efeitos dos fármacos , Glucose/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Células 3T3-L1/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Marsileaceae/química , Nanopartículas Metálicas/administração & dosagem , Camundongos , Extratos Vegetais/química
20.
Drug Res (Stuttg) ; 67(5): 289-301, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28268236

RESUMO

The synthesized 4-(4-hydroxy benzyl)-2-amino-6-hydroxy pyrimidine-5-carboxamide was chosen to perform in silico modeling with identified drug target AGT, TNF, F2 and BCL2L1. The identified human proteins are vital in the pain management and also an important target for the study of wound healing activity. The enzymes were identified by using BioGRID, string database and network analysis through Cytoscape software. The wound healing activity was evaluated by excision wound model. The observed results revealed that, the pyrimidine nanoparticles showed significant wound healing activity compared to standard and synthesized compound. The detailed synthesis of nanoparticles formulation spectral analysis and pharmacological screening data's were reported. The revealed reports of synthesized analogues and formulated nanoparticles will generate a very good impact to the chemists and research scholars for further investigations in wound healing and pain management.


Assuntos
Nanopartículas/química , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Química Farmacêutica/métodos , Simulação por Computador , Humanos , Manejo da Dor/métodos , Ratos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA