Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 363, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191471

RESUMO

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias da Próstata/genética , Próstata , Células Estromais , Diferenciação Celular , Microambiente Tumoral/genética
2.
PLoS Pathog ; 20(1): e1011881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190392

RESUMO

In people living with HIV, Kaposi Sarcoma (KS), a vascular neoplasm caused by KS herpesvirus (KSHV/HHV-8), remains one of the most common malignancies worldwide. Individuals living with HIV, receiving otherwise effective antiretroviral therapy, may present with extensive disease requiring chemotherapy. Hence, new therapeutic approaches are needed. The Wilms' tumor 1 (WT1) protein is overexpressed and associated with poor prognosis in several hematologic and solid malignancies and has shown promise as an immunotherapeutic target. We found that WT1 was overexpressed in >90% of a total 333 KS biopsies, as determined by immunohistochemistry and image analysis. Our largest cohort from ACTG, consisting of 294 cases was further analyzed demonstrating higher WT1 expression was associated with more advanced histopathologic subtypes. There was a positive correlation between the proportion of infected cells within KS tissues, assessed by expression of the KSHV-encoded latency-associated nuclear antigen (LANA), and WT1 positivity. Areas with high WT1 expression showed sparse T-cell infiltrates, consistent with an immune evasive tumor microenvironment. We show that major oncogenic isoforms of WT1 are overexpressed in primary KS tissue and observed WT1 upregulation upon de novo infection of endothelial cells with KSHV. KSHV latent viral FLICE-inhibitory protein (vFLIP) upregulated total and major isoforms of WT1, but upregulation was not seen after expression of mutant vFLIP that is unable to bind IKKÆ´ and induce NFκB. siRNA targeting of WT1 in latent KSHV infection resulted in decreased total cell number and pAKT, BCL2 and LANA protein expression. Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, demonstrates increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and immunotherapy directed against WT1 may be an approach for KS treatment.


Assuntos
Infecções por HIV , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Células Endoteliais/metabolismo , Infecções por HIV/metabolismo , Isoformas de Proteínas/metabolismo , Microambiente Tumoral
3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961242

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease that is characterized by many clinical phenotypes. One such phenotype of COPD is defined by emphysema, pathogenic lung tertiary lymphoid organs (TLOs), and autoantibody production. We have previously shown that lymphatic dysfunction can cause lung TLO formation and lung injury in mice. We now sought to uncover whether underlying lymphatic dysfunction may be a driver of lung injury in cigarette smoke (CS)-induced COPD. We found that lung TLOs in mice with lymphatic dysfunction produce autoantibodies and are associated with a lymphatic endothelial cell subtype that expresses antigen presentation genes. Mice with underlying lymphatic dysfunction develop increased emphysema after CS exposure, with increased size and activation of TLOs. CS further increased autoantibody production in mice with lymphatic dysfunction. B-cell blockade prevented TLO formation and decreased lung injury after CS in mice with lymphatic dysfunction. Using tissue from human COPD patients, we also found evidence of a lymphatic gene signature that was specific to patients with emphysema and prominent TLOs compared to COPD patients without emphysema. Taken together, these data suggest that lymphatic dysfunction may underlie lung injury in a subset of COPD patients with an autoimmune emphysema phenotype.

4.
Blood ; 142(26): 2282-2295, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774374

RESUMO

ABSTRACT: The spatial anatomy of hematopoiesis in the bone marrow (BM) has been extensively studied in mice and other preclinical models, but technical challenges have precluded a commensurate exploration in humans. Institutional pathology archives contain thousands of paraffinized BM core biopsy tissue specimens, providing a rich resource for studying the intact human BM topography in a variety of physiologic states. Thus, we developed an end-to-end pipeline involving multiparameter whole tissue staining, in situ imaging at single-cell resolution, and artificial intelligence-based digital whole slide image analysis and then applied it to a cohort of disease-free samples to survey alterations in the hematopoietic topography associated with aging. Our data indicate heterogeneity in marrow adipose tissue (MAT) content within each age group and an inverse correlation between MAT content and proportions of early myeloid and erythroid precursors, irrespective of age. We identify consistent endosteal and perivascular positioning of hematopoietic stem and progenitor cells (HSPCs) with medullary localization of more differentiated elements and, importantly, uncover new evidence of aging-associated changes in cellular and vascular morphologies, microarchitectural alterations suggestive of foci with increased lymphocytes, and diminution of a potentially active megakaryocytic niche. Overall, our findings suggest that there is topographic remodeling of human hematopoiesis associated with aging. More generally, we demonstrate the potential to deeply unravel the spatial biology of normal and pathologic human BM states using intact archival tissue specimens.


Assuntos
Inteligência Artificial , Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas/patologia , Medula Óssea/patologia , Hematopoese/fisiologia , Envelhecimento
5.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502956

RESUMO

The clinical use of potent androgen receptor (AR) inhibitors has promoted the emergence of novel subtypes of metastatic castration-resistant prostate cancer (mCRPC), including neuroendocrine prostate cancer (CRPC-NE), which is highly aggressive and lethal 1 . These mCRPC subtypes display increased lineage plasticity and often lack AR expression 2-5 . Here we show that neuroendocrine differentiation and castration-resistance in CRPC-NE are maintained by the activity of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) 6 , which catalyzes histone H3 lysine 36 dimethylation (H3K36me2). We find that organoid lines established from genetically-engineered mice 7 recapitulate key features of human CRPC-NE, and can display transdifferentiation to neuroendocrine states in culture. CRPC-NE organoids express elevated levels of NSD2 and H3K36me2 marks, but relatively low levels of H3K27me3, consistent with antagonism of EZH2 activity by H3K36me2. Human CRPC-NE but not primary NEPC tumors expresses high levels of NSD2, consistent with a key role for NSD2 in lineage plasticity, and high NSD2 expression in mCRPC correlates with poor survival outcomes. Notably, CRISPR/Cas9 targeting of NSD2 or expression of a dominant-negative oncohistone H3.3K36M mutant results in loss of neuroendocrine phenotypes and restores responsiveness to the AR inhibitor enzalutamide in mouse and human CRPC-NE organoids and grafts. Our findings indicate that NSD2 inhibition can reverse lineage plasticity and castration-resistance, and provide a potential new therapeutic target for CRPC-NE.

6.
HSS J ; 19(2): 146-153, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37065104

RESUMO

Background: Patients with inflammatory arthritis are at increased risk of prosthetic joint infections (PJIs), but diagnosis in these patients can be challenging because active inflammatory arthritis produces elevated inflammatory markers that may mimic those seen in PJI. Purpose: In this pilot study, we sought to identify the clinical, microbiologic, and histopathologic features of culture-positive and culture-negative PJI in patients with inflammatory arthritis who underwent total hip arthroplasty (THA) or total knee arthroplasty (TKA). We also sought to obtain preliminary data to support a definitive study of optimal methods for PJI diagnosis in patients with inflammatory arthritis. Methods: We performed a retrospective analysis of TKA and THA patients treated for PJI from 2009 to 2018 at a single tertiary care orthopedic institution. Data were extracted from a longitudinally maintained hospital infection database. We reviewed hematoxylin and eosin slides of osteoarthritis and inflammatory arthritis PJI cases matched 3:1, respectively, by age, sex, and culture status. Clinical characteristics were evaluated using the Fisher exact test, χ2 test, Student t test, and Mann-Whitney U test where appropriate. Results: A total of 807 PJI cases were identified (36 inflammatory arthritis and 771 osteoarthritis cases). Patients with inflammatory arthritis presented younger, had a higher Charlson Comorbidity Index, more frequently used glucocorticoids, were more likely women, and had a higher proportion of culture-negative PJI compared with osteoarthritis patients. Of the 88 inflammatory arthritis cases reviewed for histopathology, a higher proportion of culture-positive than culture-negative PJI cases had >10 polymorphonuclear leucocytes per high-power field and met Musculoskeletal Infection Society criteria but presented with less chronic inflammation. Conclusions: This retrospective prognostic study suggests that culture-negative PJI may be more frequent in patients with inflammatory arthritis than in those with osteoarthritis. Chronic infections, antibiotic use, or misdiagnosis may be contributing factors to unclear PJI diagnoses among culture-negative cases. This preliminary work supports the need for further studies to assess the differences in clinical features between culture-negative and culture-positive PJI in patients with inflammatory arthritis and the ability of biological diagnostic markers to discriminate between them in this population.

7.
bioRxiv ; 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37034687

RESUMO

Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.

8.
Arthritis Res Ther ; 25(1): 31, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864474

RESUMO

BACKGROUND: We sought to identify features that distinguish osteoarthritis (OA) and rheumatoid arthritis (RA) hematoxylin and eosin (H&E)-stained synovial tissue samples. METHODS: We compared fourteen pathologist-scored histology features and computer vision-quantified cell density (147 OA and 60 RA patients) in H&E-stained synovial tissue samples from total knee replacement (TKR) explants. A random forest model was trained using disease state (OA vs RA) as a classifier and histology features and/or computer vision-quantified cell density as inputs. RESULTS: Synovium from OA patients had increased mast cells and fibrosis (p < 0.001), while synovium from RA patients exhibited increased lymphocytic inflammation, lining hyperplasia, neutrophils, detritus, plasma cells, binucleate plasma cells, sub-lining giant cells, fibrin (all p < 0.001), Russell bodies (p = 0.019), and synovial lining giant cells (p = 0.003). Fourteen pathologist-scored features allowed for discrimination between OA and RA, producing a micro-averaged area under the receiver operating curve (micro-AUC) of 0.85±0.06. This discriminatory ability was comparable to that of computer vision cell density alone (micro-AUC = 0.87±0.04). Combining the pathologist scores with the cell density metric improved the discriminatory power of the model (micro-AUC = 0.92±0.06). The optimal cell density threshold to distinguish OA from RA synovium was 3400 cells/mm2, which yielded a sensitivity of 0.82 and specificity of 0.82. CONCLUSIONS: H&E-stained images of TKR explant synovium can be correctly classified as OA or RA in 82% of samples. Cell density greater than 3400 cells/mm2 and the presence of mast cells and fibrosis are the most important features for making this distinction.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Inflamação , Osteoartrite/diagnóstico , Artrite Reumatoide/diagnóstico , Membrana Sinovial , Aprendizado de Máquina
9.
Cancer Cell ; 41(2): 252-271.e9, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36525970

RESUMO

Mesenchymal colorectal cancer (mCRC) is microsatellite stable (MSS), highly desmoplastic, with CD8+ T cells excluded to the stromal periphery, resistant to immunotherapy, and driven by low levels of the atypical protein kinase Cs (aPKCs) in the intestinal epithelium. We show here that a salient feature of these tumors is the accumulation of hyaluronan (HA) which, along with reduced aPKC levels, predicts poor survival. HA promotes epithelial heterogeneity and the emergence of a tumor fetal metaplastic cell (TFMC) population endowed with invasive cancer features through a network of interactions with activated fibroblasts. TFMCs are sensitive to HA deposition, and their metaplastic markers have prognostic value. We demonstrate that in vivo HA degradation with a clinical dose of hyaluronidase impairs mCRC tumorigenesis and liver metastasis and enables immune checkpoint blockade therapy by promoting the recruitment of B and CD8+ T cells, including a proportion with resident memory features, and by blocking immunosuppression.


Assuntos
Neoplasias Colorretais , Ácido Hialurônico , Microambiente Tumoral , Humanos , Linfócitos T CD8-Positivos/patologia , Neoplasias Colorretais/patologia , Ácido Hialurônico/metabolismo , Imunoterapia , Sarcoma/patologia , Microambiente Tumoral/fisiologia
10.
JBMR Plus ; 6(7): e10635, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35866148

RESUMO

Macrophages are important for repair of injured tissues, but their role in healing after surgical repair of musculoskeletal tissues is not well understood. We used single-cell RNA sequencing (RNA-seq), flow cytometry, and transcriptomics to characterize functional phenotypes of macrophages in a mouse anterior cruciate ligament reconstruction (ACLR) model that involves bone injury followed by a healing phase of bone and fibrovascular interface tissue formation that results in bone-to-tendon attachment. We identified a novel "surgery-induced" highly inflammatory CD9+ IL1+ macrophage population that expresses neutrophil-related genes, peaks 1 day after surgery, and slowly resolves while transitioning to a more homeostatic phenotype. In contrast, CX3CR1+ CCR2+ macrophages accumulated more slowly and unexpectedly expressed an interferon signature, which can suppress bone formation. Deletion of Ccr2 resulted in an increased amount of bone in the surgical bone tunnel at the tendon interface, suggestive of improved healing. The "surgery-induced macrophages" identify a new cell type in the early phase of inflammation related to bone injury, which in other tissues is dominated by blood-derived neutrophils. The complex patterns of macrophage and inflammatory pathway activation after ACLR set the stage for developing therapeutic strategies to target specific cell populations and inflammatory pathways to improve surgical outcomes. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
Arthritis Rheumatol ; 74(9): 1544-1555, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35438841

RESUMO

OBJECTIVE: Age-associated/autoimmune B cells (ABCs) are an emerging B cell subset with aberrant expansion in systemic lupus erythematosus. ABC generation and differentiation exhibit marked sexual dimorphism, and Toll-like receptor 7 (TLR-7) engagement is a key contributor to these sex differences. ABC generation is also controlled by interleukin-21 (IL-21) and its interplay with interferon-γ and IL-4. This study was undertaken to investigate whether IL-13 receptor α1 (IL-13Rα1), an X-linked receptor that transmits IL-4/IL-13 signals, regulates ABCs and lupus pathogenesis. METHODS: Mice lacking DEF-6 and switch-associated protein 70 (double-knockout [DKO]), which preferentially develop lupus in females, were crossed with IL-13Rα1-knockout mice. IL-13Rα1-knockout male mice were also crossed with Y chromosome autoimmune accelerator (Yaa) DKO mice, which overexpress TLR-7 and develop severe disease. ABCs were assessed using flow cytometry and RNA-Seq. Lupus pathogenesis was evaluated using serologic and histologic analyses. RESULTS: ABCs expressed higher levels of IL-13Rα1 than follicular B cells. The absence of IL-13Rα1 in either DKO female mice or Yaa DKO male mice decreased the accumulation of ABCs, the differentiation of ABCs into plasmablasts, and autoantibody production. Lack of IL-13Rα1 also prolonged survival and delayed the development of tissue inflammation. IL-13Rα1 deficiency diminished in vitro generation of ABCs, an effect that, surprisingly, could be observed in response to IL-21 alone. RNA-Seq revealed that ABCs lacking IL-13Rα1 down-regulated some histologic characteristics of B cells but up-regulated myeloid markers and proinflammatory mediators. CONCLUSION: Our findings indicate a novel role for IL-13Rα1 in controlling ABC generation and differentiation, suggesting that IL-13Rα1 contributes to these effects by regulating a subset of IL-21-mediated signaling events. These results also suggest that X-linked genes besides TLR7 participate in the regulation of ABCs in lupus.


Assuntos
Interleucina-13 , Lúpus Eritematoso Sistêmico , Receptores de Interleucina-13 , Animais , Feminino , Interleucina-13/metabolismo , Subunidade alfa1 de Receptor de Interleucina-13/genética , Interleucina-4 , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores de Interleucina-13/genética , Receptor 7 Toll-Like
12.
ACR Open Rheumatol ; 4(4): 322-331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35014221

RESUMO

OBJECTIVE: We quantified inflammatory burden in rheumatoid arthritis (RA) synovial tissue by using computer vision to automate the process of counting individual nuclei in hematoxylin and eosin images. METHODS: We adapted and applied computer vision algorithms to quantify nuclei density (count of nuclei per unit area of tissue) on synovial tissue from arthroplasty samples. A pathologist validated algorithm results by labeling nuclei in synovial images that were mislabeled or missed by the algorithm. Nuclei density was compared with other measures of RA inflammation such as semiquantitative histology scores, gene-expression data, and clinical measures of disease activity. RESULTS: The algorithm detected a median of 112,657 (range 8,160-821,717) nuclei per synovial sample. Based on pathologist-validated results, the sensitivity and specificity of the algorithm was 97% and 100%, respectively. The mean nuclei density calculated by the algorithm was significantly higher (P < 0.05) in synovium with increased histology scores for lymphocytic inflammation, plasma cells, and lining hyperplasia. Analysis of RNA sequencing identified 915 significantly differentially expressed genes in correlation with nuclei density (false discovery rate is less than 0.05). Mean nuclei density was significantly higher (P < 0.05) in patients with elevated levels of C-reactive protein, erythrocyte sedimentation rate, rheumatoid factor, and cyclized citrullinated protein antibody. CONCLUSION: Nuclei density is a robust measurement of inflammatory burden in RA and correlates with multiple orthogonal measurements of inflammation.

13.
J Orthop Res ; 40(5): 1104-1112, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34370349

RESUMO

Formalin-fixed and paraffin-embedded (FFPE) biospecimens are a valuable and widely-available resource for diagnostic and research applications. With biobanks of tissue samples available in many institutions, FFPE tissues could prove to be a valuable resource for translational orthopaedic research. The purpose of this study was to characterize the molecular profiles and degree of histologic degeneration on archival fragments of FFPE human menisci obtained during arthroscopic partial meniscectomy. We used FFPE menisci for multiplexed gene expression analysis using the NanoString nCounter® platform, and for histological assessment using a quantitative scoring system. In total, 17 archival specimens were utilized for integrated histologic and molecular analyses. The median patient age was 22 years (range: 14-62). We found that the genes with the highest normalized counts were those typically expressed in meniscal fibrocartilage. Gene expression differences were identified in patient cohorts based on age (≤40 years), including genes associated with the extracellular matrix and tissue repair. The majority of samples showed mild to moderate histologic degeneration. Based on these data, we conclude that FFPE human menisci can be effectively utilized for molecular evaluation following a storage time as long as 11 years. Statement of Clinical Significance: The integration of histological and transcriptomic analyses described in this study will be useful for future studies investigating the basis for biological classification of meniscus specimens in patients. Further exploration into the genes and pathways uncovered by this study may suggest targets for biomarker discovery and identify patients at greater risk for osteoarthritis once the meniscus is torn.


Assuntos
Formaldeído , Menisco , Adolescente , Adulto , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Inclusão em Parafina , RNA/análise , Fixação de Tecidos , Transcriptoma , Adulto Jovem
14.
J Orthop Res ; 40(2): 504-512, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33792974

RESUMO

The objective of this study was to evaluate histologic and molecular features of meniscus degeneration in cohorts of patients with and without osteoarthritis (OA) of the knee. Menisci were obtained from patients undergoing total knee arthroplasty for OA (TKA) or arthroscopic partial meniscectomy (APM) for a torn knee meniscus. Degenerative meniscal tears were among the most common tear type in the APM group based on the pattern. Using an integrative workflow for molecular evaluation of formalin-fixed and paraffin-embedded tissues, human menisci underwent blinded histologic evaluation and NanoString gene expression analyses. Histology revealed increased proteoglycan content in TKA menisci compared to APM menisci, but otherwise no significant differences in the total pathology score or sub-scores between patients based on age or cohort. NanoString analyses revealed differential expression of genes primarily associated with the PI3K-AKT signaling pathway, cell cycle, and apoptosis. These data provide new insights into histological and molecular features of meniscus degeneration in patients with and without knee OA. Histologic assessment of menisci showed similar severity of overall degeneration between cohorts, but there were differences at the molecular level. The dysregulated pathways identified in this study could contribute to early-onset meniscus degeneration, or to a predisposition to meniscus tears and subsequent knee OA. Further studies that validate genes and pathways uncovered in this study will allow us to evaluate novel approaches to assess and treat meniscal degeneration.


Assuntos
Traumatismos do Joelho , Menisco , Osteoartrite do Joelho , Artroscopia , Humanos , Traumatismos do Joelho/patologia , Meniscectomia , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Menisco/patologia , Osteoartrite do Joelho/patologia , Fosfatidilinositol 3-Quinases
15.
J Bone Miner Res ; 37(3): 577-594, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897801

RESUMO

Staphyloccocus aureus is one of the major pathogens in orthopedic periprosthetic joint infection (PJI), a devastating complication of total joint arthroplasty that often results in chronic and persistent infections that are refractory to antibiotics and require surgical interventions. Biofilm formation has been extensively investigated as a reason for persistent infection. The cellular composition, activation status, cytokine profile, and role of the immune response during persistent S. aureus PJI are incompletely understood. In this study, we used histology, multiparametric flow cytometry, and gene expression analysis to characterize the immune response in a clinically relevant orthopedic PJI model. We tested the hypothesis that persistent S. aureus infection induces feedback mechanisms that suppress immune cell activation, thereby affecting the course of infection. Surprisingly, persistent infection was characterized by strikingly high cytokine gene expression indicative of robust activation of multiple components of innate and adaptive immunity, along with ongoing severe neutrophil-dominated inflammation, in infected joint and bone tissues. Activation and expansion of draining lymph nodes and a bone marrow stress granulopoiesis reaction were also maintained during late phase infection. In parallel, feedback mechanisms involving T-cell inhibitory receptors and exhaustion markers, suppressive cytokines, and regulatory T cells were activated and associated with decreased T-cell proliferation and tissue infiltration during the persistent phase of infection. These results identify the cellular and molecular components of the mouse immune response to persistent S. aureus PJI and indicate that neutrophil infiltration, inflammatory cytokine responses, and ongoing lymph node and bone marrow reactions are insufficient to clear infection and that immune effector mechanisms are suppressed by feedback inhibitory pathways. These immune-suppressive mechanisms are associated with diminished T-cell proliferation and tissue infiltration and can be targeted as part of adjuvant immunotherapeutic strategies in combination with debridement of biofilm, antibiotics, and other therapeutic modalities to promote eradication of infection. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Infecções Relacionadas à Prótese , Infecções Estafilocócicas , Tíbia/transplante , Animais , Antibacterianos , Citocinas , Modelos Animais de Doenças , Imunidade , Camundongos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/etiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
16.
Sci Rep ; 11(1): 21107, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702854

RESUMO

In osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression. Here, we integrated transcriptomic and epigenomic analyses in cartilage after induction of OA to show that the structural progression of OA is accompanied by early transcriptomic and pronounced DNA methylation (5mC) changes in chondrocytes. These changes accumulate over time and are associated with recapitulation of developmental processes, including cartilage development, chondrocyte hypertrophy, and ossification. Our integrative analyses also uncovered that Lrrc15 is differentially methylated and expressed in OA cartilage, and that it may contribute to the functional and phenotypic alterations of chondrocytes, likely coordinating stress responses and dysregulated extracellular matrix remodeling.


Assuntos
Cartilagem Articular/metabolismo , Metilação de DNA , Epigenoma , Proteínas de Membrana/biossíntese , Osteoartrite/metabolismo , Transcriptoma , Animais , Epigenômica , Perfilação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Osteoartrite/genética
17.
Nat Commun ; 12(1): 4813, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376664

RESUMO

Differences in immune responses to viruses and autoimmune diseases such as systemic lupus erythematosus (SLE) can show sexual dimorphism. Age-associated B cells (ABC) are a population of CD11c+T-bet+ B cells critical for antiviral responses and autoimmune disorders. Absence of DEF6 and SWAP-70, two homologous guanine exchange factors, in double-knock-out (DKO) mice leads to a lupus-like syndrome in females marked by accumulation of ABCs. Here we demonstrate that DKO ABCs show sex-specific differences in cell number, upregulation of an ISG signature, and further differentiation. DKO ABCs undergo oligoclonal expansion and differentiate into both CD11c+ and CD11c- effector B cell populations with pathogenic and pro-inflammatory function as demonstrated by BCR sequencing and fate-mapping experiments. Tlr7 duplication in DKO males overrides the sex-bias and further augments the dissemination and pathogenicity of ABCs, resulting in severe pulmonary inflammation and early mortality. Thus, sexual dimorphism shapes the expansion, function and differentiation of ABCs that accompanies TLR7-driven immunopathogenesis.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fatores Etários , Envelhecimento/genética , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Estimativa de Kaplan-Meier , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Fatores Sexuais , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo
18.
Bone Joint J ; 103-B(7 Supple B): 135-144, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34192911

RESUMO

AIMS: Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system's response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue. METHODS: Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure. RESULTS: NETs biomarkers were identified in peri-implant fibrotic tissue collected from aseptic loosening patients and at the bone-implant interface in a murine model of osseointegration failure. Inhibition (Pad4-/- ) or resolution (DNase 1) of NETs improved osseointegration and reduced fibrotic tissue despite loose implant conditions in mice. CONCLUSION: This study identifies a biological target (NETs) for potential noninvasive treatments of aseptic loosening by discovering a novel connection between the innate immune system and post-injury bone remodelling caused by implant loosening. By inhibiting or resolving NETs in an osseointegration failure murine model, fibrotic tissue encapsulation around an implant is reduced and osseointegration is enhanced, despite loose implant conditions. Cite this article: Bone Joint J 2021;103-B(7 Supple B):135-144.


Assuntos
Desoxirribonuclease I/imunologia , Armadilhas Extracelulares/imunologia , Osseointegração/fisiologia , Proteína-Arginina Desiminase do Tipo 4/imunologia , Tíbia/cirurgia , Animais , Interface Osso-Implante , Modelos Animais de Doenças , Fibrose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Falha de Prótese
19.
J Bone Miner Res ; 36(9): 1765-1780, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34076292

RESUMO

The importance of a local tissue immune response in healing injured tissues such as skin and lung is well established. Little is known about whether sterile wounds elicit lymph node (LN) responses and inflammatory responses after injury of musculoskeletal tissues that are mechanically loaded during the repair response. We investigated LN and tissue immune responses in a tibial implant model of joint replacement surgery where wounded tissue is subjected to movement and mechanical loading postoperatively. Draining inguinal and iliac LNs expanded postoperatively, including increases in regulatory T cells and activation of a subset of T cells. Thus, tissue injury was actively sensed in secondary lymphoid organs, with the potential to activate adaptive immunity. Joint tissues exhibited three temporally distinct immune response components, including a novel interferon (IFN) response with activation of signal transducer and activator of transcription (STAT) and interferon regulatory factor (IRF) pathways. Fibrovascular tissue formation was not associated with a macrophage type 2 (M2) reparative immune response, but instead with delayed induction of interleukin-1 family (IL-1ß, IL-33, IL-36), IL-17, and prostaglandin pathway genes concomitant with transforming growth factor (TGF)-ß and growth factor signaling, fibroblast activation, and tissue formation. Tissue remodeling was associated with activity of the HOX antisense intergenic RNA (HOTAIR) pathway. These results provide insights into immune responses and regulation of tissue healing after knee arthroplasty that potentially can be used to develop therapeutic strategies to improve healing, prevent arthrofibrosis, and improve surgical outcomes. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Artroplastia do Joelho , Imunidade Adaptativa , Animais , Linfonodos , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta
20.
J Immunol ; 206(7): 1631-1641, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674446

RESUMO

Inhibitors of the immunoproteasome (i-20S) have shown promise in mouse models of autoimmune diseases and allograft rejection. In this study, we used a novel inhibitor of the immunoproteasome, PKS3053, that is reversible, noncovalent, tight-binding, and highly selective for the ß5i subunit of the i-20S to evaluate the role that i-20S plays in regulating immune responses in vitro and in vivo. In contrast to irreversible, less-selective inhibitors, PKS3053 did not kill any of the primary human cell types tested, including plasmacytoid dendritic cells, conventional dendritic cells, macrophages, and T cells, all of which expressed genes encoding both the constitutive proteasome (c-20S) and i-20S. PKS3053 reduced TLR-dependent activation of plasmacytoid dendritic cells, decreasing their maturation and IFN-α response and reducing their ability to activate allogenic T cells. In addition, PKS3053 reduced T cell proliferation directly and inhibited TLR-mediated activation of conventional dendritic cells and macrophages. In a mouse model of skin injury that shares some features of cutaneous lupus erythematosus, blocking i-20S decreased inflammation, cellular infiltration, and tissue damage. We conclude that the immunoproteasome is involved in the activation of innate and adaptive immune cells, that their activation can be suppressed with an i-20S inhibitor without killing them, and that selective inhibition of ß5i holds promise as a potential therapy for inflammatory skin diseases such as psoriasis, cutaneous lupus erythematosus, and systemic sclerosis.


Assuntos
Células Dendríticas/imunologia , Inflamação/tratamento farmacológico , Lúpus Eritematoso Cutâneo/tratamento farmacológico , Macrófagos/imunologia , Inibidores de Proteassoma/uso terapêutico , Pele/patologia , Linfócitos T/imunologia , Animais , Movimento Celular , Células Cultivadas , Citotoxicidade Imunológica , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...