Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8011): 402-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632412

RESUMO

Throughout life, neuronal networks in the mammalian neocortex maintain a balance of excitation and inhibition, which is essential for neuronal computation1,2. Deviations from a balanced state have been linked to neurodevelopmental disorders, and severe disruptions result in epilepsy3-5. To maintain balance, neuronal microcircuits composed of excitatory and inhibitory neurons sense alterations in neural activity and adjust neuronal connectivity and function. Here we identify a signalling pathway in the adult mouse neocortex that is activated in response to increased neuronal network activity. Overactivation of excitatory neurons is signalled to the network through an increase in the levels of BMP2, a growth factor that is well known for its role as a morphogen in embryonic development. BMP2 acts on parvalbumin-expressing (PV) interneurons through the transcription factor SMAD1, which controls an array of glutamatergic synapse proteins and components of perineuronal nets. PV-interneuron-specific disruption of BMP2-SMAD1 signalling is accompanied by a loss of glutamatergic innervation in PV cells, underdeveloped perineuronal nets and decreased excitability. Ultimately, this impairment of the functional recruitment of PV interneurons disrupts the cortical excitation-inhibition balance, with mice exhibiting spontaneous epileptic seizures. Our findings suggest that developmental morphogen signalling is repurposed to stabilize cortical networks in the adult mammalian brain.


Assuntos
Proteína Morfogenética Óssea 2 , Interneurônios , Neocórtex , Parvalbuminas , Transdução de Sinais , Proteína Smad1 , Animais , Proteína Smad1/metabolismo , Camundongos , Interneurônios/metabolismo , Neocórtex/metabolismo , Neocórtex/citologia , Parvalbuminas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Masculino , Feminino , Neurônios/metabolismo , Inibição Neural , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Sinapses/metabolismo , Rede Nervosa/metabolismo
2.
Mol Psychiatry ; 27(6): 2868-2878, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35296806

RESUMO

Frequent relapse prevents the successful treatment of substance use disorders and is triggered in part by retrieval of drug-associated memories. Drug-conditioned behaviours in rodents are reinstated upon drug memory retrieval following re-exposure to cues previously associated with the drug, or the drug itself. Therapies based on mechanistic insights from rodent studies have focused on amnesic procedures of cue-drug associations but with so far limited success. Conversely, more recent studies propose that inhibiting drug memory retrieval offers improved anti-relapse efficacy. However, mechanisms of memory retrieval are poorly understood. Here, we used a conditioned place preference (CPP) procedure in mice to investigate the cellular and molecular underpinnings of drug-induced memory retrieval. After extinction training of CPP, Ca2+-permeable AMPA receptors (CP-AMPARs) accumulated at drug-generated silent synapses of nucleus accumbens (NAc) medium spiny neurons. The NAc CP-AMPARs regulated the retrieval mechanism of drug memories after extinction. Specifically, we used different priming doses of cocaine, fentanyl, or a cue associated with drug exposure to reinstate CPP, providing different memory retrieval conditions. Although both high and low doses of these two drugs induced CPP reinstatement, compromising CP-AMPAR accumulation impaired CPP reinstatement, induced by low doses of each drug or the cue. This threshold effect was mediated by NAc CP-AMPARs as region specific knock-down of PSD-95 prevented low-dose cocaine-induced retrieval selectively. These results demonstrate the NAc as a brain region and CP-AMPARs as key synaptic substrates that govern the threshold for drug-induced retrieval and behavioural expression of drug memories.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Cocaína/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Camundongos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo
3.
J Alzheimers Dis ; 60(2): 593-604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869464

RESUMO

Alterations in tau synaptic distribution are considered to underlie synaptic dysfunction observed in Alzheimer's disease (AD). In the present study, brain blood hypoperfusion was simulated in mouse brain slices, and tau levels and phosphorylation were investigated in total extracts, as well as in postsynaptic density fractions (PSDs) and non-PSDs obtained through differential extraction and centrifugation. Oxygen deprivation (OD) resulted in tau dephosphorylation at several AD-related residues and activation of GSK3ß and phosphatase PP2A. On the contrary, glucose deprivation (GD) did not affect total levels of cellular tau or its phosphorylation despite inactivation of GSK3ß. However, tau distribution in PSD and non-PSD fractions and the pattern of tau phosphorylation in these compartments is highly complex. In PSDs, tau was increased under GD conditions and decreased under OD conditions. GD resulted in tau dephosphorylation at Ser199, Ser262, and Ser396 while OD resulted in tau hyperphosphorylation at Ser199 and Ser404. In the non-PSD fraction, GD or OD resulted in lower levels of tau, but the phosphorylation status of tau was differentially affected. In GD conditions, tau was found dephosphorylated at Ser199, Thr205, and Ser404 and hyperphosphorylated at Ser262. However, in OD conditions tau was found hyperphosphorylated at Thr205, SerSer356, Ser396, and Ser404. Combined OD and GD resulted in degradation of cellular tau and dephosphorylation of PSD tau at Ser396 and Ser404. These results indicate that oxygen deprivation causes dephosphorylation of tau, while GD and OD differentially affect distribution of total tau and tau phosphorylation variants in neuronal compartments by activating different mechanisms.


Assuntos
Glucose/deficiência , Hipóxia/patologia , Neurônios/citologia , Sinapses/metabolismo , Proteínas tau/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Relação Dose-Resposta a Droga , Glucose/farmacologia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Serina/metabolismo , Frações Subcelulares , Sinapses/efeitos dos fármacos
4.
EMBO J ; 36(4): 458-474, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077487

RESUMO

Exposure to cocaine generates silent synapses in the nucleus accumbens (NAc), whose eventual unsilencing/maturation by recruitment of calcium-permeable AMPA-type glutamate receptors (CP-AMPARs) after drug withdrawal results in profound remodeling of NAc neuro-circuits. Silent synapse-based NAc remodeling was shown to be critical for several drug-induced behaviors, but its role in acquisition and retention of the association between drug rewarding effects and drug-associated contexts has remained unclear. Here, we find that the postsynaptic proteins PSD-93, PSD-95, and SAP102 differentially regulate excitatory synapse properties in the NAc. Mice deficient for either of these scaffold proteins exhibit distinct maturation patterns of silent synapses and thus provided instructive animal models to examine the role of NAc silent synapse maturation in cocaine-conditioned place preference (CPP). Wild-type and knockout mice alike all acquired cocaine-CPP and exhibited increased levels of silent synapses after drug-context conditioning. However, the mice differed in CPP retention and CP-AMPAR incorporation. Collectively, our results indicate that CP-AMPAR-mediated maturation of silent synapses in the NAc is a signature of drug-context association, but this maturation is not required for establishing or retaining cocaine-CPP.


Assuntos
Cálcio/metabolismo , Cocaína/metabolismo , Núcleo Accumbens/fisiologia , Receptores de AMPA/metabolismo , Síndrome de Abstinência a Substâncias , Sinapses/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Knockout , Receptores de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...