Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 3712024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38168702

RESUMO

The characterization of cyanobacteria communities remains challenging, as taxonomy of several cyanobacterial genera is still unresolved, especially within Nostocales taxa. Nostocales cyanobacteria are capable of nitrogen fixation; nitrogenase genes are grouped into operons and are located in the same genetic locus. Structural nitrogenase genes (nifH, nifK and nifD) as well as 16S rRNA have been shown to be adequate genetic markers for distinguishing cyanobacterial genera. However, there is no available information regarding the phylogeny of regulatory genes of the nitrogenase cluster. Aiming to provide a more accurate overview of the evolution of nitrogen fixation, this study analyzed for the first time nifE and nifN genes, which regulate the production of nitrogenase, alongside nifH. Specific primers were designed to amplify nifE and nifN genes, previously not available in literature and phylogenetic analysis was carried out in 13 and 14 TAU-MAC culture collection strains, respectively, of ten Nostocales genera along with other sequences retrieved from cyanobacteria genomes. Phylogenetic analysis showed that these genes seem to follow a common evolutionary pattern with nitrogenase structural genes and 16S rRNA. The classification of cyanobacteria based on these molecular markers seems to distinguish Nostocales strains with common morphological, ecological, and physiological characteristics.


Assuntos
Cianobactérias , Nitrogenase , Nitrogenase/genética , Filogenia , RNA Ribossômico 16S/genética , Fixação de Nitrogênio/genética , Cianobactérias/genética
2.
Mol Phylogenet Evol ; 170: 107454, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341965

RESUMO

Well-studied thermal spring microbial mat systems continue to serve as excellent models from which to make discoveries of general importance to microbial community ecology in order to address comprehensively the question of "who is there" in a microbial community. Cyanobacteria are highly adaptable and an integral part of many ecosystems including thermal springs. In this context, we sampled disparate thermal springs, spanning from Iceland and Poland to Greece and Tajikistan. Thirteen (13) strains were isolated and characterised with taxonomic indices and molecular markers (16S-23S rRNA region and cpcBA gene), whilst their thermotolerance was evaluated. Screening for the presence of genes encoding three heat shock proteins, as well as non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) was performed. This approach resulted in the description of two new genera (Hillbrichtia and Amphirytos) and their type species (Hillbrichtia pamiria and Amphirytos necridicus) representing Oscillatoriales and Synechococcales orders, respectively. We also found unique lineages inside the genus Thermoleptolyngbya, describing a novel species (T. hindakiae). We described the presence of sub-cosmopolitan taxa (such as Calothrix, Desertifilum, and Trichormus). Strains were diverse concerning their thermophilic ability with the strains well adapted to high temperatures possessing all three investigated genes encoding heat shock proteins as well as studied PKS and NRPS genes. In this work, we show novel cyanobacteria diversity from thermal springs from disparate environments, possible correlation of thermotolerance and their genetic background, which may have implications on strategic focusing of screening programs on underexploited taxa in these habitats.


Assuntos
Cianobactérias , Ecossistema , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Mol Phylogenet Evol ; 166: 107322, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626811

RESUMO

Cyanobacteria are ecologically versatile microorganisms, occupying diverse habitats, from terrestrial caves to coastal shores and from brackish lakes to thermal springs. Cyanobacteria have also been linked with hydrogen cyanide (HCN), mainly for their ability to catabolize HCN by the nitrogenase enzyme. In this context, we sampled disparate environments, spanning from Canary Islands and Iceland to Estonia and Cyprus. Eighty-one (81) strains were isolated and characterised with taxonomic indices and molecular markers (16S-23S rRNA region and cpcBA region), whilst their ability to produce HCN was evaluated. This approach resulted in the description of five new genera (Speleotes, Haliplanktos, Olisthonema, Speos, and Iphianassa) and their type species (S. anchialus, H. antonyquinny, O. eestii, S. fyssassi, I. zackieohae) representing Chroococcales, Chroococcidiopsales, Oscillatoriales, Synechococcales, and Nostocales orders, respectively. We also found unique lineages inside the genera Komarekiella, Stenomitos, Cyanocohniella, and Nodularia, describing four new species (K. chia, S. pantisii, C. hyphalmyra, N. mediterannea). We report for the first time a widespread production of HCN amongst different taxa and habitats. Epilithic lifestyle, where cyanobacteria are more vulnerable to grazers, had the largest relative frequency in HCN production. In this work, we show novel cyanobacteria diversity from various habitats, including an unexplored anchialine cave, and possible correlation of cyanobacteria chemo- with species diversity, which may have implications on strategic focusing of screening programs on underexploited taxa and/or habitats.


Assuntos
Cianobactérias , DNA Bacteriano/genética , Ecossistema , Lagos , Filogenia , RNA Ribossômico 16S/genética
5.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348912

RESUMO

Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC-) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.


Assuntos
Carcinógenos/toxicidade , Cianobactérias/metabolismo , Microcistinas/toxicidade , Microtúbulos/efeitos dos fármacos , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
6.
Toxins (Basel) ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349572

RESUMO

Cyanobacteria are a diverse group of photosynthetic Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against a broad spectrum of organisms and cell lines. In this study, 29 strains isolated from freshwaters in Greece were classified using a polyphasic approach and assigned to Chroococcales, Synechococcales, and Nostocales, representing 11 genera and 17 taxa. There were good agreements between 16S ribosomal RNA (rRNA)-cpcBA-internal genetic spacer (IGS) characterization and morphological features, except for the Jaaginema-Limnothrix group which appears intermixed and needs further elucidation. Methanol extracts of the strains were analyzed for cyanotoxin production and tested against pathogenic bacteria species and several cancer cell lines. We report for the first time a Nostoc oryzae strain isolated from rice fields capable of producing microcystins (MCs) and a Chlorogloeopsis fritschii strain isolated from the plankton of a lake, suggesting that this species may also occur in freshwater temperate habitats. Strains with very high or identical 16S rRNA gene sequences displayed different antibacterial and cytotoxic activities. Extracts from Synechococcus cf. nidulans showed the most potent antibacterial activity against Staphylococcus aureus, whereas Jaaginema sp. strains exhibited potent cytotoxic activities against human colorectal adenocarcinoma and hepatocellular carcinoma cells. Jaaginema Thessaloniki Aristotle University Microalgae and Cyanobacteria (TAU-MAC) 0110 and 0210 strains caused pronounced changes in the actin network and triggered the formation of numerous lipid droplets in hepatocellular carcinoma and green monkey kidney cells, suggesting oxidative stress and/or mitochondrial damage leading to apoptosis.


Assuntos
Toxinas Bacterianas/análise , Cianobactérias/isolamento & purificação , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Biodiversidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Misturas Complexas/farmacologia , Cianobactérias/classificação , Cianobactérias/genética , Água Doce/microbiologia , Grécia , Humanos , Microalgas/classificação , Microalgas/genética , Microalgas/isolamento & purificação , Filogenia , RNA Ribossômico 16S
7.
Harmful Algae ; 80: 96-106, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30502817

RESUMO

The cyanobacterium Cylindrospermopsis raciborskii represents a challenge for researchers and it is extensively studied for its toxicity and invasive behaviour, which is presumably enhanced by global warming. Biogeography studies indicate a tropical origin for this species, with Greece considered as the expansion route of C. raciborskii in Europe. The widening of its geographic distribution and the isolation of strains showing high optimum growth temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. The dominance of species like C. raciborskii along with their ecotoxicology and potential human risk related problems, render the establishment of a clear phylogeography model essential. In the context of the present study, the characterization of Cylindrospermopsis raciborskii TAU-MAC 1414 strain, isolated from Lake Karla, with respect to its phylogeography and toxic potential, is attempted. Our research provides new insights on the origin of C. raciborskii in the Mediterranean region; C. raciborskii expanded in Mediterranean from North America, whilst the rest of the European strains may originate from Asia and Australia. Microcystin synthetase genes, phylogenetic closely related with Microcystis strains, were also present in C. raciborskii TAU-MAC 1414. We were unable to unambiguously confirm the presence of MC-LR, using LC-MS/MS. Our results are shedding light on the expansion and distribution of C. raciborskii, whilst they pose further questions on the toxic capacity of this species.


Assuntos
Cylindrospermopsis/classificação , Filogeografia , Cylindrospermopsis/genética , Grécia , Funções Verossimilhança , RNA Ribossômico 16S/química
8.
Sci Data ; 5: 180226, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30351308

RESUMO

Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.


Assuntos
Cianobactérias/química , Monitoramento Ambiental , Lagos , Mudança Climática , Europa (Continente) , Fitoplâncton/química , Pigmentos Biológicos
9.
Toxins (Basel) ; 10(4)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652856

RESUMO

Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.


Assuntos
Toxinas Bacterianas/análise , Cianobactérias , Lagos/microbiologia , Microcistinas/análise , Tropanos/análise , Uracila/análogos & derivados , Poluentes da Água/análise , Alcaloides , Mudança Climática , Toxinas de Cianobactérias , Monitoramento Ambiental , Europa (Continente) , Temperatura , Uracila/análise
10.
Biodivers Data J ; (4): e10084, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27956851

RESUMO

BACKGROUND: The checklist of Greek Cyanobacteria was created in the framework of the Greek Taxon Information System (GTIS), an initiative of the LifeWatchGreece Research Infrastructure (ESFRI) that has resumed efforts to compile a complete checklist of species reported from Greece. This list was created from exhaustive search of the scientific literature of the last 60 years. All records of taxa known to occur in Greece were taxonomically updated. NEW INFORMATION: The checklist of Greek Cyanobacteria comprises 543 species, classified in 130 genera, 41 families, and 8 orders. The orders Synechococcales and Oscillatoriales have the highest number of species (158 and 153 species, respectively), whereas these two orders along with Nostocales and Chroococcales cover 93% of the known Greek cyanobacteria species. It is worth mentioning that 18 species have been initially described from Greek habitats. The marine epilithic Ammatoidea aegea described from Saronikos Gulf is considered endemic to this area. Our bibliographic review shows that Greece hosts a high diversity of cyanobacteria, suggesting that the Mediterranean area is also a hot spot for microbes.

11.
Biodivers Data J ; (4): e7965, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226753

RESUMO

BACKGROUND: Currently, cyanobacterial diversity is examined using a polyphasic approach by assessing morphological and molecular data (Komárek 2015). However, the comparison of morphological and genetic data is sometimes hindered by the lack of cultures of several cyanobacterial morphospecies and inadequate morphological data of sequenced strains (Rajaniemi et al. 2005). Furthermore, in order to evaluate the phenotypic plasticity within defined taxa, the variability observed in cultures has to be compared to the range in natural variation (Komárek and Mares 2012). Thus, new tools are needed to aggregate, link and process data in a meaningful way, in order to properly study and understand cyanodiversity. NEW INFORMATION: An online database on cyanobacteria has been created, namely the Cyanobacteria culture collection (CCC) (http://cyanobacteria.myspecies.info/) using as case studies cyanobacterial strains isolated from lakes of Greece, which are part of the AUTH culture collection (School of Biology, Aristotle University of Thessaloniki). The database hosts, for the first time, information and data such as morphology/morphometry, biogeography, phylogeny, microphotographs, distribution maps, toxicology and biochemical traits of the strains. All this data are structured managed, and presented online and are publicly accessible with a recently developed tool, namely "Scratchpads", a taxon-centric virtual research environment allowing browsing the taxonomic classification and retrieving various kinds of relevant information for each taxon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...