Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1236348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808315

RESUMO

Tuberculosis (TB), an airborne pulmonary disease caused by Mycobacterium tuberculosis (M. tb), poses an unprecedented health and economic burden to most of the developing countries. Treatment of TB requires prolonged use of a cocktail of antibiotics, which often manifest several side effects, including stomach upset, nausea, and loss of appetite spurring on treatment non-compliance and the emergence of antibiotic resistant M. tb. The anti-TB treatment regimen causes imbalances in the composition of autochthonous microbiota associated with the human body, which also contributes to major side effects. The microbiota residing in the gastrointestinal tract play an important role in various physiological processes, including resistance against colonization by pathogens, boosting host immunity, and providing key metabolic functions. In TB patients, due to prolonged exposure to anti-tuberculosis drugs, the gut microbiota significantly loses its diversity and several keystone bacterial taxa. This loss may result in a significant reduction in the functional potency of the microbiota, which is a probable reason for poor treatment outcomes. In this review, we discuss the structural and functional changes of the gut microbiota during TB and its treatment. A major focus of the review is oriented to the gut microbial association with micronutrient profiles and immune cell dynamics during TB infection. Furthermore, we summarize the acquisition of anti-microbial resistance in M. tb along with the microbiome-based therapeutics to cure the infections. Understanding the relationship between these components and host susceptibility to TB disease is important to finding potential targets that may be used in TB prevention, progression, and cure.

2.
Future Microbiol ; 18: 173-186, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916516

RESUMO

Aim: To characterize extensively drug-resistant Pseudomonas aeruginosa from a patient with diarrhea. Materials & methods: Antimicrobial susceptibility was tested by the disk diffusion method. The P. aeruginosa genome was sequenced to identify virulence, antibiotic resistance and prophages encoding genes. Results: P. aeruginosa had a wide spectrum of resistance to antibiotics. Genomic analysis of P. aeruginosa revealed 76 genes associated with antimicrobial resistance, xenobiotic degradation and the type three secretion system. Conclusion: This is the first report on diarrhea associated with P. aeruginosa. Since no other organism was identified, the authors assume that the patient had dysbiosis due to antibiotic exposure, leading to antibiotic-associated diarrhea. The in vivo toxicity expressed by the pathogen may be associated with T3SS.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genômica , Virulência/genética , Diarreia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
3.
Microb Ecol ; 86(1): 97-111, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35869999

RESUMO

The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Xenobióticos/metabolismo , Xenobióticos/farmacologia
4.
Prog Mol Biol Transl Sci ; 192(1): 281-307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280322

RESUMO

The bidirectional communication between the gut and the brain has come up very fascinating in recent years. Many studies have reported that the onset of gastrointestinal issues appears long before the actual manifestation of Parkinson's disease (PD) symptoms. Disturbances in the gut-brain axis have been found to be linked with PD. PD-linked neuropathological changes in the enteric nervous system and significant alteration of gut microbiota suggest a vital role of gut microbiota in PD pathogenesis. Studies have also suggested that aggregation of α-synuclein, one of the major proteins associated with PD neuropathology, might start from the gut and move to the central nervous system (CNS) through the vagus nerve and olfactory bulb. Inflammation in the gut has been suggested to be associated with PD initiation and progression. The flushing out of healthy gut microbiota and replacing with pathogens induces gut inflammation and promotes neuroinflammation in the CNS. Therefore, it is intriguing to understand the mechanism of gut-brain communications associated with the development of PD. This review sheds light on the PD pathology, the gut dysbiosis that is associated with PD and its medications, altered gene expression, pathways and microbial metabolites during PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Disbiose , Inflamação/metabolismo
5.
Prog Mol Biol Transl Sci ; 191(1): 229-262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36270680

RESUMO

The autochthonous microbial communities comprising symbionts, commensals, and opportunistic pathogens living throughout the human body profoundly contribute to health by reducing disease susceptibility and maturing host immunity. The community compositions and functional repertoires of microbiomes present in the different body habitats are dynamic. The structural and functional balance of the human microbiome could be modulated by environmental factors, lifestyle, and host genetics. Several functions of the microbial community directly or indirectly modulate host cellular signaling pathways that are associated with energy assimilation, sensing and responding to environmental signals through the neuroendocrine pathways, and resistance against colonization of allochthonous microbiota with disease-causing potential. Both culture-dependent and independent characterizations of microbial community compositions and their functional attributes help us to recognize the importance of microbial diversity in individual's health and identify the microbes and their metabolites associated with health and diseases. Such an in-depth understanding of the human microbiome created avenues of microbiome-based translation research, which led to the discovery and development of large numbers of medical therapies. In this chapter, we discuss the current success of microbiome-based therapies for infectious and metabolic diseases, and the major bottleneck and challenges of translational research with the community of symbiotic microorganisms.


Assuntos
Microbiota , Probióticos , Humanos
6.
Genome Med ; 13(1): 36, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658065

RESUMO

BACKGROUND: Recent studies have indicated an association of gut microbiota and microbial metabolites with type 2 diabetes mellitus (T2D). However, large-scale investigation of the gut microbiota of "prediabetic" (PD) subjects has not been reported. Identifying robust gut microbiome signatures of prediabetes and characterizing early prediabetic stages is important for the understanding of disease development and could be crucial in early diagnosis and prevention. METHODS: The current study performed amplification and sequencing on the variable regions (V1-V5) of the 16S rRNA genes to profile and compare gut microbiota of prediabetic individuals (N = 262) with normoglycemic individuals (N = 275) from two cohorts in India and Denmark. Similarly, fasting serum inflammatory biomarkers were profiled from the study participants. RESULTS: After correcting for strong country-specific cohort effect, 16 operational taxonomic units (OTUs) including members from the genera Prevotella9, Phascolarctobacterium, Barnesiella, Flavonifractor, Tyzzerella_4, Bacteroides, Faecalibacterium, and Agathobacter were identified as enriched in normoglycaemic subjects with respect to the subjects with prediabetes using a negative binomial Wald test. We also identified 144 OTUs enriched in the prediabetic subjects, which included members from the genera Megasphaera, Streptococcus, Prevotella9, Alistipes, Mitsuokella, Escherichia/Shigella, Prevotella2, Vibrio, Lactobacillus, Alloprevotella, Rhodococcus, and Klebsiella. Comparative analyses of relative abundance of bacterial taxa revealed that the Streptococcus, Escherichia/Shigella, Prevotella2, Vibrio, and Alloprevotella OTUs exhibited more than fourfold enrichment in the gut microbiota of prediabetic subjects. When considering subjects from the two geographies separately, we were able to identify additional gut microbiome signatures of prediabetes. The study reports a probable association of Megasphaera OTU(s) with impaired glucose tolerance, which is significantly pronounced in Indian subjects. While the overall results confirm a state of proinflammation as early as in prediabetes, the Indian cohort exhibited a characteristic pattern of abundance of inflammatory markers indicating low-grade intestinal inflammation at an overall population level, irrespective of glycemic status. CONCLUSIONS: The results present trans-ethnic gut microbiome and inflammation signatures associated with prediabetes, in Indian and Danish populations. The identified associations may be explored further as potential early indicators for individuals at risk of dysglycemia.


Assuntos
Etnicidade , Microbioma Gastrointestinal , Estado Pré-Diabético/microbiologia , Adulto , Idoso , Algoritmos , Biomarcadores/metabolismo , Estudos de Coortes , Dinamarca , Feminino , Predisposição Genética para Doença , Humanos , Índia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Filogenia
7.
Proc Natl Acad Sci U S A ; 117(38): 23762-23773, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32873641

RESUMO

Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome of Vibrio cholerae harbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome of V. cholerae and examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in the V. cholerae chromosome. We have deleted more than 250 acquired genes from 6 different loci in the V. cholerae chromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, including Escherichia coli In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypass V. cholerae immunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome of V. cholerae to remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.


Assuntos
Genoma Bacteriano/genética , Ilhas Genômicas/genética , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Conjugação Genética/genética , Engenharia Genética , Sequências Repetitivas Dispersas/genética , Prófagos/genética , Serina Endopeptidases/genética , Vibrio cholerae/patogenicidade
8.
Vaccine ; 38 Suppl 1: A7-A12, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-31272871

RESUMO

The bipartite genome of Vibrio cholerae is divided into two circular non-homologous chromosomes, which harbor several genetic elements like phages, plasmids, transposons, integrative conjugative elements, and pathogenic islands that encode functions responsible for disease development, antimicrobial resistance, and subsistence in hostile environments. These elements are highly heterogeneous, mobile in nature, and encode their own mobility functions or exploit host-encoded enzymes for intra- and inter-cellular movements. The key toxin of V. cholerae responsible for the life-threatening diarrheal disease cholera, the cholera toxin, is coded by part of the genome of a filamentous phage, CTXϕ. The replicative genome of CTXϕ is divided into two distinct modular structures and has adopted a unique strategy for its irreversible integration into the V. cholerae chromosomes. CTXϕ exploits two host-encoded tyrosine recombinases, XerC and XerD, for its integration in the highly conserved dimer resolution site (dif) of V. cholerae chromosomes. CTXϕ can replicate only in the limited number of Vibrio species. In contrast, the phage integration into the bacterial chromosome does not rely on its replication and could integrate to the dif site of large numbers of gram-negative bacteria. Recent pangenomic analysis revealed that like CTXϕ, the bacterial dif site is the integration spot for several other mobile genetic elements such as plasmids and genomic islands. In this review we discuss about current molecular insights into CTXϕ genomics and its replication and integration mechanisms into hosts. Particular emphasis has been given on the exploitation of CTXϕ genomics knowledge in developing genetic tools and designing environmentally safe recombinant live oral cholera vaccine strains.


Assuntos
Bacteriófagos/genética , Vibrio cholerae/virologia , Integração Viral , Bacteriófagos/fisiologia , Cólera , Toxina da Cólera/genética , Cromossomos Bacterianos , Genoma Viral , Genômica , Humanos , Vibrio cholerae/genética
9.
Cell Death Discov ; 3: 17067, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29142761

RESUMO

Toll-like receptor 4 (TLR4) plays a critical role in host immunity against Gram-negative bacteria. It transduces signals through two distinct TIR-domain-containing adaptors, MyD88 and TRIF, which function at the plasma membrane and endosomes, respectively. Using zebrafish Aeromonas hydrophila infection model, we demonstrate that synchronization of MyD88 and TRIF dependent pathways is critical for determining the fate of infection. Zebrafish were infected with A. hydrophila, and bacterial recovery studies suggested its effective persistence inside the host. Histopathological assessment elucidates that A. hydrophila did not provoke inflammatory responses in the spleen. Immunofluorescence revealed the presence of TLR4-bound A. hydrophila on the plasma membrane at 3 h post-infection (p.i.), and inside endosomes 1 day p.i. Quantitative PCR studies suggest that TLR4 activates the downstream pathway of MyD88-IRAK4 axis at early stages followed by a shift to TRIF-TRAF6 axis at late stages of infection coupled with fold increase in NFκB. Our results implicated the involvement of p110δ isoform of PI(3)Kinase in this transition. Coupled to this, we noted that the TLR4-TRIF-NFκB axis prompted burgeoned secretion of anti-inflammatory cytokines. We observed that A. hydrophila inhibits endosome maturation and escapes to cytoplasm. Significant downregulation of cytosolic-NLR receptors further suggested that A. hydrophila represses pro-inflammatory responses in cytosol aiding its persistence. Our findings suggest a novel role of 'TLR4 topology' in A. hydrophila-induced pathogenesis. We propose that A. hydrophila manipulates translocation of TLR4 and migrates to endosome, where it triggers TRIF-dependent anti-inflammatory responses, interferes with endosomal maturation and escapes to cytosol. Inside the cytosol, A. hydrophila avoids detection by suppressing NLRs, facilitating its survival and ensuing pathogenesis.

10.
Sci Rep ; 7(1): 14468, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089611

RESUMO

Emergence of antimicrobial resistant Gram-negative bacteria has created a serious global health crisis and threatens the effectiveness of most, if not all, antibiotics commonly used to prevent and treat bacterial infections. There is a dearth of detailed studies on the prevalence of antimicrobial resistance (AMR) patterns in India. Here, we have isolated and examined AMR patterns of 654 enteric pathogens and investigated complete genome sequences of isolates from six representative genera, which in aggregate encode resistance against 22 antibiotics representing nine distinct drug classes. This study revealed that ~97% isolates are resistant against ≥2 antibiotics, ~24% isolates are resistant against ≥10 antibiotics and ~3% isolates are resistant against ≥15 antibiotics. Analyses of whole genome sequences of six extensive drug resistant enteric pathogens revealed presence of multiple mobile genetic elements, which are physically linked with resistance traits. These elements are therefore appearing to be responsible for disseminating drug resistance among bacteria through horizontal gene transfer. The present study provides insights into the linkages between the resistance patterns to certain antibiotics and their usage in India. The findings would be useful to understand the genetics of resistance traits and severity of and difficulty in tackling AMR enteric pathogens.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Índia , Testes de Sensibilidade Microbiana , Fenótipo , Sequenciamento Completo do Genoma
11.
Sci Rep ; 6: 26775, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27240745

RESUMO

To explore the natural microbial community of any ecosystems by high-resolution molecular approaches including next generation sequencing, it is extremely important to develop a sensitive and reproducible DNA extraction method that facilitate isolation of microbial DNA of sufficient purity and quantity from culturable and uncultured microbial species living in that environment. Proper lysis of heterogeneous community microbial cells without damaging their genomes is a major challenge. In this study, we have developed an improved method for extraction of community DNA from different environmental and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved method has been named as the THSTI method to depict the Institute where the method was developed.


Assuntos
DNA/isolamento & purificação , Metagenômica/métodos , DNA Bacteriano/isolamento & purificação , Genoma Microbiano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiologia do Solo
12.
J Bacteriol ; 198(2): 268-75, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26503849

RESUMO

UNLABELLED: The genesis of toxigenic Vibrio cholerae involves acquisition of CTXϕ, a single-stranded DNA (ssDNA) filamentous phage that encodes cholera toxin (CT). The phage exploits host-encoded tyrosine recombinases (XerC and XerD) for chromosomal integration and lysogenic conversion. The replicative genome of CTXϕ produces ssDNA by rolling-circle replication, which may be used either for virion production or for integration into host chromosome. Fine-tuning of different ssDNA binding protein (Ssb) levels in the host cell is crucial for cellular functioning and important for CTXϕ integration. In this study, we mutated the master regulator gene of SOS induction, lexA, of V. cholerae because of its known role in controlling levels of Ssb proteins in other bacteria. CTXϕ integration decreased in cells with a ΔlexA mutation and increased in cells with an SOS-noninducing mutation, lexA (Ind(-)). We also observed that overexpression of host-encoded Ssb (VC0397) decreased integration of CTXϕ. We propose that LexA helps CTXϕ integration, possibly by fine-tuning levels of host- and phage-encoded Ssbs. IMPORTANCE: Cholera toxin is the principal virulence factor responsible for the acute diarrheal disease cholera. CT is encoded in the genome of a lysogenic filamentous phage, CTXϕ. Vibrio cholerae has a bipartite genome and harbors single or multiple copies of CTXϕ prophage in one or both chromosomes. Two host-encoded tyrosine recombinases (XerC and XerD) recognize the folded ssDNA genome of CTXϕ and catalyze its integration at the dimer resolution site of either one or both chromosomes. Fine-tuning of ssDNA binding proteins in host cells is crucial for CTXϕ integration. We engineered the V. cholerae genome and created several reporter strains carrying ΔlexA or lexA (Ind(-)) alleles. Using the reporter strains, the importance of LexA control of Ssb expression in the integration efficiency of CTXϕ was demonstrated.


Assuntos
Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Genoma Viral , Serina Endopeptidases/metabolismo , Integração Viral/genética , Proteínas de Bactérias/genética , Bacteriófagos , Cromossomos Bacterianos/genética , DNA de Cadeia Simples/genética , Serina Endopeptidases/genética , Vibrio cholerae
13.
J Bacteriol ; 196(23): 4071-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225263

RESUMO

CTXΦ, a filamentous vibriophage encoding cholera toxin, uses a unique strategy for its lysogeny. The single-stranded phage genome forms intramolecular base-pairing interactions between two inversely oriented XerC and XerD binding sites (XBS) and generates a functional phage attachment site, attP(+), for integration. The attP(+) structure is recognized by the host-encoded tyrosine recombinases XerC and XerD (XerCD), which enables irreversible integration of CTXΦ into the chromosome dimer resolution site (dif) of Vibrio cholerae. The dif site and the XerCD recombinases are widely conserved in bacteria. We took advantage of these conserved attributes to develop a broad-host-range integrative expression vector that could irreversibly integrate into the host chromosome using XerCD recombinases without altering the function of any known open reading frame (ORF). In this study, we engineered two different arabinose-inducible expression vectors, pBD62 and pBD66, using XBS of CTXΦ. pBD62 replicates conditionally and integrates efficiently into the dif of the bacterial chromosome by site-specific recombination using host-encoded XerCD recombinases. The expression level of the gene of interest could be controlled through the PBAD promoter by modulating the functions of the vector-encoded transcriptional factor AraC. We validated the irreversible integration of pBD62 into a wide range of pathogenic and nonpathogenic bacteria, such as V. cholerae, Vibrio fluvialis, Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Gene expression from the PBAD promoter of integrated vectors was confirmed in V. cholerae using the well-studied reporter genes mCherry, eGFP, and lacZ.


Assuntos
Vetores Genéticos , Genética Microbiana/métodos , Inovirus/genética , Biologia Molecular/métodos , Vibrio/virologia , Sítios de Ligação Microbiológicos , Cromossomos Bacterianos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Escherichia coli/genética , Expressão Gênica , Genoma Viral , Inovirus/isolamento & purificação , Klebsiella pneumoniae/genética , Regiões Promotoras Genéticas , Recombinação Genética , Salmonella enterica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...