Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 17(1): 85, 2019 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-31656198

RESUMO

BACKGROUND: Voluntary control of fertility is of paramount importance to the modern society. But since the contraceptive methods available for women have their limitations such as urinary tract infections, allergies, cervical erosion and discomfort, a desperate need exists to develop safe methods. Vaginal contraceptives may be the answer to this problem, as these are the oldest ways of fertility regulation, practiced over the centuries. With minimal systemic involvement, these are also the safest. Natural substances blocking or impairing the sperm motility offer as valuable non-cytotoxic vaginal contraceptives. Antimicrobial peptides (AMPs) isolated from plants, animals and microorganisms are known to possess sperm immobilizing and spermicidal properties. Following this, in the quest for alternative means, we have cloned, over expressed and purified the recombinant sperm agglutinating factor (SAF) from Staphylococcus warneri, isolated from the cervix of a woman with unexplained infertility. METHODS: Genomic library of Staphylococcus warneri was generated in Escherichia coli using pSMART vector and screened for sperm agglutinating factor (SAF). The insert in sperm agglutinating transformant was sequenced and was found to express ribonucleotide-diphosphate reductase-α sub unit. The ORF was sub-cloned in pET28a vector, expressed and purified. The effect of rSAF on motility, viability, morphology, Mg++-dependent ATPase activity and acrosome status of human sperms was analyzed in vitro and contraceptive efficacy was evaluated in vivo in female BALB/c mice. RESULTS: The 80 kDa rSAF showed complete sperm agglutination, inhibited its Mg2+-ATPase activity, caused premature sperm acrosomal loss in vitro and mimicked the pattern in vivo showing 100% contraception in BALB/c mice resulting in prevention of pregnancy. The FITC labeled SAF was found to bind the entire surface of spermatozoa. Vaginal application and oral administration of rSAF to mice for 14 successive days did not demonstrate any significant change in vaginal cell morphology, organ weight and tissue histology of reproductive and non-reproductive organs and had no negative impact in the dermal and penile irritation tests. CONCLUSION: The Sperm Agglutinating Factor from Staphylococcus warneri, natural microflora of human cervix, showed extensive potential to be employed as a safe vaginal contraceptive.


Assuntos
Colo do Útero/microbiologia , Anticoncepcionais Femininos/farmacologia , Aglutinação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Staphylococcus/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/fisiologia , Animais , Anticoncepcionais Femininos/metabolismo , Feminino , Biblioteca Genômica , Humanos , Infertilidade Feminina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Staphylococcus/genética
2.
Indian J Microbiol ; 59(1): 51-57, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30728630

RESUMO

Staphylococcus warneri, isolated from the cervix of an adult female with unexplained infertility, was found to agglutinate human spermatozoa in vitro leading to their death. A genomic library of S. warneri was generated using pSMART-Escherichia coli vector-host system. Approximately 3500 transformants were screened and four showed sperm agglutinating activity. Sperm agglutinating proteins (SAPs) were partially purified from the positive transformants and were found to agglutinate sperms in vitro. Cloned ORFs in positive transformants were sequenced and ORF finder identified them as endonuclease, accessory secretory protein-Asp1, accessory secretory protein-Asp2 and signal transduction protein. Mannose was found to competitively inhibit sperm agglutination, indicating that SAPs in S. warneri bind to mannose in glycoprotein receptors on the surface of sperms for agglutination. This is the first report on identification of SAPs which may be responsible for unexplained infertility in women and may be used as contraceptive agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA