Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Mol Cancer ; 23(1): 147, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048991

RESUMO

Non-small cell lung cancer (NSCLC) constitutes one of the deadliest and most common malignancies. The LKB1/STK11 tumour suppressor is mutated in ∼ 30% of NSCLCs, typically lung adenocarcinomas (LUAD). We implemented zebrafish and human lung organoids as synergistic platforms to pre-clinically screen for metabolic compounds selectively targeting LKB1-deficient tumours. Interestingly, two kinase inhibitors, Piceatannol and Tyrphostin 23, appeared to exert synthetic lethality with LKB1 mutations. Although LKB1 loss alone accelerates energy expenditure, unexpectedly we find that it additionally alters regulation of the key energy homeostasis maintenance player leptin (LEP), further increasing the energetic burden and exposing a vulnerable point; acquired sensitivity to the identified compounds. We show that compound treatment stabilises Hypoxia-inducible factor 1-alpha (HIF1A) by antagonising Von Hippel-Lindau (VHL)-mediated HIF1A ubiquitination, driving LEP hyperactivation. Importantly, we demonstrate that sensitivity to piceatannol/tyrphostin 23 epistatically relies on a HIF1A-LEP-Uncoupling Protein 2 (UCP2) signaling axis lowering cellular energy beyond survival, in already challenged LKB1-deficient cells. Thus, we uncover a pivotal metabolic vulnerability of LKB1-deficient tumours, which may be therapeutically exploited using our identified compounds as mitochondrial uncouplers.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Leptina , Mitocôndrias , Proteínas Serina-Treonina Quinases , Peixe-Zebra , Humanos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Leptina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Desacopladores/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linhagem Celular Tumoral , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Estilbenos
2.
Front Nutr ; 11: 1388492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812942

RESUMO

Introduction: This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods: Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results: The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion: Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.

3.
Appl Microbiol Biotechnol ; 107(23): 7269-7285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741938

RESUMO

Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Simulação de Acoplamento Molecular , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
4.
Pharmaceutics ; 15(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37242681

RESUMO

Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.

5.
Appl Microbiol Biotechnol ; 107(4): 1373-1389, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635396

RESUMO

Staphylococcus aureus biofilms are implicated in hospital infections due to elevated antibiotic and host immune system resistance. Molecular components of cell wall including amyloid proteins, peptidoglycans (PGs), and lipoteichoic acid (LTA) are crucial for biofilm formation and tolerance of methicillin-resistant S. aureus (MRSA). Significance of alkaline phosphatases (ALPs) for biofilm formation has been recorded. Serrapeptase (SPT), a protease of Serratia marcescens, possesses antimicrobial properties similar or superior to those of many antibiotics. In the present study, SPT anti-biofilm activity was demonstrated against S. aureus (ATCC 25923, methicillin-susceptible strain, methicillin-susceptible S. aureus (MSSA)) and MRSA (ST80), with IC50 values of 0.67 µg/mL and 7.70 µg/mL, respectively. SPT affected bacterial viability, causing a maximum inhibition of - 46% and - 27%, respectively. Decreased PGs content at [SPT] ≥ 0.5 µg/mL and ≥ 8 µg/mL was verified for MSSA and MRSA, respectively. In MSSA, LTA levels decreased significantly (up to - 40%) at lower SPT doses but increased at the highest dose of 2 µg/mL, a counter to spectacularly increased cellular and secreted LTA levels in MRSA. SPT also reduced amyloids of both strains. Additionally, intracellular ALP activity decreased in both MSSA and MRSA (up to - 85% and - 89%, respectively), while extracellular activity increased up to + 482% in MSSA and + 267% in MRSA. Altered levels of DING proteins, which are involved in phosphate metabolism, in SPT-treated bacteria, were also demonstrated here, implying impaired phosphorus homeostasis. The differential alterations in the studied molecular aspects underline the differences between MSSA and MRSA and offer new insights in the treatment of resistant bacterial biofilms. KEY POINTS: • SPT inhibits biofilm formation in methicillin-resistant and methicillin-susceptible S. aureus. • SPT treatment decreases bacterial viability, ALP activity, and cell wall composition. • SPT-treated bacteria present altered levels of phosphate-related DING proteins.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Meticilina , Antibacterianos/farmacologia , Peptídeo Hidrolases , Infecções Estafilocócicas/microbiologia , Biofilmes , Homeostase , Testes de Sensibilidade Microbiana
6.
J Inorg Biochem ; 235: 111947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933833

RESUMO

Quercetin is one of the most bioactive and common dietary flavonoids, with a significant repertoire of biological and pharmacological properties. The biological activity of quercetin, however, is influenced by its limited solubility and bioavailability. Driven by the need to enhance quercetin bioavailability and bioactivity through metal ion complexation, synthetic efforts led to a unique ternary Ce(III)-quercetin-(1,10-phenanthroline) (1) compound. Physicochemical characterization (elemental analysis, FT-IR, Thermogravimetric analysis (TGA), UV-Visible, NMR, Electron Spray Ionization-Mass Spectrometry (ESI-MS), Fluorescence, X-rays) revealed its solid-state and solution properties, with significant information emanating from the coordination sphere composition of Ce(III). The experimental data justified further entry of 1 in biological studies involving toxicity, (Reactive Oxygen Species, ROS)-suppressing potential, cell metabolism inhibition in Saccharomyces cerevisiae (S. cerevisiae) cultures, and plasmid DNA degradation. DFT calculations revealed its electronic structure profile, with in silico studies showing binding to DNA, DNA gyrase, and glutathione S-transferase, thus providing useful complementary insight into the elucidation of the mechanism of action of 1 at the molecular level and interpretation of its bio-activity. The collective work projects the importance of physicochemically supported bio-activity profile of well-defined Ce(III)-flavonoid compounds, thereby justifying focused pursuit of new hybrid metal-organic materials, effectively enhancing the role of naturally-occurring flavonoids in physiology and disease.


Assuntos
Antioxidantes , Quercetina , Anti-Inflamatórios , Antioxidantes/farmacologia , DNA , Fenantrolinas , Quercetina/química , Quercetina/farmacologia , Saccharomyces cerevisiae , Espectroscopia de Infravermelho com Transformada de Fourier
7.
EMBO Rep ; 23(2): e51287, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897944

RESUMO

RASSF1A promoter methylation has been correlated with tumor dedifferentiation and aggressive oncogenic behavior. Nevertheless, the underlying mechanism of RASSF1A-dependent tumor dedifferentiation remains elusive. Here, we show that RASSF1A directly uncouples the NOTCH-HES1 axis, a key suppressor of differentiation. Interestingly, the crosstalk of RASSF1A with HES1 occurs independently from the signaling route connecting RASSF1A with the Hippo pathway. At the molecular level, we demonstrate that RASSF1A acts as a scaffold essential for the SUMO-targeted E3 ligase SNURF/RNF4 to target HES1 for degradation. The reciprocal relationship between RASSF1A and HES1 is evident across a wide range of human tumors, highlighting the clinical significance of the identified pathway. We show that HES1 upregulation in a RASSF1A-depleted environment renders cells non-responsive to the downstream effects of γ-secretase inhibitors (GSIs) which restrict signaling at the level of the NOTCH receptor. Taken together, we report a mechanism through which RASSF1A exerts autonomous regulation of the critical Notch effector HES1, thus classifying RASSF1A expression as an integral determinant of the clinical effectiveness of Notch inhibitors.


Assuntos
Receptores Notch , Transdução de Sinais , Fatores de Transcrição HES-1 , Proteínas Supressoras de Tumor , Humanos , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
Exp Gerontol ; 156: 111621, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748951

RESUMO

Oxidative/nitrative stress that results from the unbalance of the overproduction/clearance of reactive oxygen/nitrogen species (ROS/NOS), originated from a variety of endo- and/or exo-genous sources, can have detrimental effects on DNA and is involved in Alzheimer's disease (AD) pathology. An excellent marker of oxidative DNA lesions is 8-hydroxy-2'-deoxyguanosine (8-OHdG) while of nitrative stress the enzyme NOS2 (Nitric oxide synthase 2). Under massive oxidative stress, poly(ADP-ribose)polymerase 1 (PARP-1) enzyme activity, responsible for restoration of DNA damage, is augmented, DNA repair enzymes are recruited, and cell survival/or death is ensued through PARP-1 activation, which is correlated positively with neurodegenerative diseases. In this biochemical study the levels of PARP-1, 8-oxo-dG, and NOS2, Aß1-42, and p-tau in their sera determined using Enzyme-Linked Immunosorbent Assay (ELISA). Patients diagnosed with Mild Cognitive Impairment participated in MICOIL clinical trial, were daily administered with 50 ml Extra Virgin Olive Oil (EVOO) for one year. All MCI patients' biomarkers that had consumed EVOO were tantamount to those of healthy participants, contrary to MCI patients who were not administered. EVOO administration in MCI patients resulted in the restoration of DNA damage and of the well-established "hallmarks" AD biomarkers, thanks probably to its antioxidant properties exhibiting a therapeutic potentiality against AD. Molecular docking simulations of the EVOO constituents on the crystal structure of PARP-1 and NOS-2 target enzymes were also employed, to study in silico the ability of the compounds to bind to these enzymes and explain the observed in vitro activity. In silico analysis has proved the binding of EVOO constituents on PARP-1and NOS-2 enzymes and their interaction with crucial amino acids of the active sites. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996. MICOIL GOV IDENTIFIER: NCT03362996.


Assuntos
Disfunção Cognitiva , Inibidores de Poli(ADP-Ribose) Polimerases , Dano ao DNA , Humanos , Simulação de Acoplamento Molecular , Azeite de Oliva/farmacologia , Estresse Oxidativo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
9.
J Neuroimmunol ; 361: 577744, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655990

RESUMO

Glial fibrillary acidic protein (GFAP) is the main constituent of the astrocytic cytoskeleton, overexpressed during reactive astrogliosis-a hallmark of Alzheimer's Disease (AD). GFAP and established biomarkers of neurodegeneration, inflammation, and apoptosis have been determined in the saliva of amnestic-single-domain Mild Cognitive Impairment (MCI) (Ν = 20), AD (Ν = 20) patients, and cognitively healthy Controls (Ν = 20). Salivary GFAP levels were found significantly decreased in MCI and AD patients and were proven an excellent biomarker for discriminating Controls from MCI or AD patients. GFAP levels correlate with studied biomarkers and Aß42, IL-1ß, and caspase-8 are its main predictors.


Assuntos
Doença de Alzheimer/diagnóstico , Apoptose , Disfunção Cognitiva/diagnóstico , Proteína Glial Fibrilar Ácida/análise , Doenças Neuroinflamatórias/diagnóstico , Saliva/química , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/análise , Área Sob a Curva , Biomarcadores , Caspase 8/análise , Estudos Transversais , Ciclo-Oxigenase 2/análise , Feminino , Humanos , Interleucina-1beta/análise , Masculino , Testes Neuropsicológicos , Fragmentos de Peptídeos/análise , Projetos Piloto , Curva ROC , Fator de Necrose Tumoral alfa/análise , Proteínas tau/análise
10.
J Neuroimmunol ; 357: 577561, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091099

RESUMO

This study reports elevated levels of bacterial lipopolysaccharides (LPSs) and cyclooxygenases (COX-1/2) in blood serum and cerebrospinal fluid (CSF) of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) patients compared to cognitively healthy individuals, indicating LPSs as promising biomarkers, especially in serum. LPSs, in both fluids, positively correlate with COX-1/2, Αß42 and tau and negatively with mental state. Furthermore, COX-2 is the main determinant of LPSs presence in serum, whereas COX-1 in CSF. These results underline the significance of microbial/ inflammatory involvement in dementia and offer novel perspectives on the roles of LPSs and COX in pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Bactérias/metabolismo , Disfunção Cognitiva/metabolismo , Lipopolissacarídeos/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
J Inorg Biochem ; 221: 111402, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33975249

RESUMO

An oxovanadium(IV) - curcumin based complex, viz. [VO(cur)(2,2´-bipy)(H2O)] where cur is curcumin and bipy is bipyridine, previously synthesized, has been studied for interaction with albumin and DNA. Fluorescence emission spectroscopy was used to evaluate the interaction of the complex with bovine serum albumin (BSA) and the BSA-binding constant (Kb) was calculated to be 2.56 x 105 M-1, whereas a single great-affinity binding site was revealed. Moreover, the hemocompatibility test demonstrated that the complex presented low hemolytic fraction (mostly below 1%), in all concentrations tested (0-250 µΜ of complex, 5% DMSO) assuring a safe application in interaction with blood. The binding of the complex to DNA was also investigated using absorption, fluorescence, and viscometry methods indicating a binding through a minor groove mode. From competitive studies with ethidium bromide the apparent binding constant value to DNA was estimated to be 4.82 x 106 M-1. Stern-Volmer quenching phenomenon gave a ΚSV constant [1.92 (± 0.05) x 104 M-1] and kq constant [8.33 (± 0.2) x 1011 M-1s-1]. Molecular docking simulations on the crystal structure of BSA, calf thymus DNA, and DNA gyrase, as well as pharmacophore analysis for BSA target, were also employed to study in silico the ability of [VO(cur)(2,2´-bipy)(H2O)] to bind to these target bio-macromolecules and explain the observed in vitro activity.


Assuntos
Complexos de Coordenação/metabolismo , Curcumina/metabolismo , DNA Girase/metabolismo , DNA/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Sítios de Ligação , Bovinos , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Curcumina/análogos & derivados , Curcumina/toxicidade , DNA/química , DNA Girase/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Vanádio/química , Vanádio/toxicidade , Viscosidade/efeitos dos fármacos
12.
Exp Gerontol ; 150: 111344, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836262

RESUMO

The daily consumption of Extra Virgin Olive Oil (EVOO) in Mediterranean nutrition is tightly associated with lower frequency of many diseases' appearance, including Alzheimer's disease (AD). Fibrinolytic system is already assumed to be involved in AD pathophysiology through various factors, especially plasminogen activator inhibitor-1 (PAI-1), a2-antiplasmin (α2ΑP) and tissue plasminogen activator (tPA). We, here, present a biochemical study, as a continuation of a clinical trial of a cohort of 84 participants, focusing on the pleiotropic effect of the annual EVOO consumption on the fibrinolytic factors of Mild Cognitive Impairment (MCI) patients. The levels of all these fibrinolytic factors, measured by Enzyme-Linked Immunosorbent Assay (ELISA) method, were reduced in the serum of MCI patients annually administered with EVOO, versus not treated MCI patients, as well as AD patients. The well-established AD hallmarks (Aß1-40 and Aß1-42 species, tau, and p-tau) of MCI patients' group, annually administered with EVOO, were restored to levels equal to those of the cognitively-healthy group; in contrast to those patients not being administered, and their AD hallmarks levels increased at the end of the year. Moreover, one of the EVOO annual consumption multimodal effects on the MCI patients focused on the levels of an oxidative stress trademark, malondialdehyde (MDA), which displayed also a visible quenching; On the other hand, an increase exhibited in the MCI patients not consuming EVOO one year after, was attributed to the lack of the EVOO anti-oxidative properties. These outcomes are exploitable towards the establishment of natural products like EVOO, as a preventive remedy fighting this neurodegenerative disorder, AD. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT03362996 MICOIL gov Identifier: NCT03362996.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Azeite de Oliva , Estresse Oxidativo , Ativador de Plasminogênio Tecidual
13.
Pharmaceutics ; 13(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467090

RESUMO

In this work, novel chrysin-loaded poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers were synthesized according to a modified oil-in-water single emulsion/solvent evaporation method, utilizing poly(vinyl alcohol) surfactant as stabilizer and dispersing agent for the emulsification, and were evaluated for their physico-chemical and morphological properties, loading capacity and entrapment efficiency and in vitro release of their load. The findings suggest that the novel micro-formulations possess a spherical and relatively wrinkled structure with sizes ranging between 2.4 and 24.7 µm and a highly negative surface charge with z-potential values between (-18.1)-(-14.1) mV. The entrapment efficiency of chrysin in the poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers was estimated to be 58.10% and 43.63%, whereas the loading capacity was found to be 3.79% and 15.85%, respectively. The average release percentage of chrysin was estimated to be 23.10% and 18.01%, respectively. The novel micromaterials were further biologically evaluated for their hemolytic activity through hemocompatibility studies over a range of hematological parameters and cytoxicity against the epithelial human breast cancer cell line MDA-MB 231. The poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers reached an IC50 value with an encapsulated chrysin content of 149.19 µM and 312.18 µM, respectively, and showed sufficient blood compatibility displaying significantly low (up to 2%) hemolytic percentages at concentrations between 5 and 500 µg·mL-1.

14.
Breast Cancer Res Treat ; 186(2): 305-316, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389400

RESUMO

PURPOSE: Elevated expression of PAI-1 has been widely linked with adverse outcomes in a variety of human cancers, such as breast, gastric and ovarian cancers, rendering PAI-1 a prognostic biomarker. As a result, several chemical inhibitors are currently being developed against PAI-1; however, the clinical setting where they might confer survival benefits has not yet been elucidated. METHODS: RNA sequencing data analysis from the TCGA/GTEx cancer portals (n = 3607 samples). In silico molecular docking analyses to predict functional macromolecule interactions. ER-/PR- (MDA-MB-231) and ER+/PR+ (MCF-7) breast cancer cell lines implemented to assess the effect of oleuropein as a natural inhibitor of PAI-1-mediated oncogenic proliferation. RESULTS: We show that high PAI-1 levels inversely correlate with ER and PR expressions in a wide panel of estrogen/progesterone-responsive human malignancies. By implementing an in silico molecular docking analysis, we identify oleuropein, a phenolic component of olive oil, as a potent PAI-1-binding molecule displaying increased affinity compared to the other olive oil constituents. We demonstrate that EVOO or oleuropein treatment alone may act as a natural PAI-1 inhibitor by incrementally destabilising PAI-1 levels selectively in ER-/PR- breast cancer cells, accompanied by downstream caspase activation and cell growth inhibition. In contrast, ER+/PR+ breast cancer cells, where PAI-1 expression is absent or low, do not adequately respond to treatment. CONCLUSIONS: Our study demonstrates an inverse correlation between PAI-1 and ESR1/PGR levels, as well as overall patient survival in estrogen/progesterone-responsive human tumours. With a focus on breast cancer, our data identify oleuropein as a natural PAI-1 inhibitor and suggest that oleuropein-mediated PAI-1 destabilisation may confer clinical benefit only in ER-/PR- tumours.


Assuntos
Neoplasias da Mama , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células , Feminino , Humanos , Glucosídeos Iridoides , Simulação de Acoplamento Molecular , Inibidor 1 de Ativador de Plasminogênio/genética , Receptores de Progesterona
15.
Exp Gerontol ; 144: 111178, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33290860

RESUMO

Even though Alzheimer's disease (AD) is the most common cause of dementia, the mechanisms governing the establishment and progression of the disease remain largely unknown. Here, we investigated the implication of the neuroprotective protein BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) in AD and the possibility to reverse the onset of the disease through the administration of extra virgin olive oil (EVOO) in Mild Cognitive Impairment (MCI) patients. For this purpose, we utilized a wide bank of MCI patient samples to examine the potential effects of EVOO. We found that while EVOO treatment increases BMI1 levels, p53 levels drop in MCI patient serum after EVOO treatment for 12 months. Additionally, AD-related biomarkers (p-tau, Aß1-42 and Aß1-42/Aß-40 ratio) return to normal levels after administration of EVOO in MCI patients for 12 months. Moreover, we show that upon EVOO administration, BMI1-upregulation correlates with reduction of oxidative stress and inflammatory responses. In conclusion, we provide clinical trial evidence to confirm that restoration of BMI1 activity through EVOO administration in MCI patients constitutes a potential therapeutic approach against neurodegeneration leading to AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Biomarcadores , Disfunção Cognitiva/tratamento farmacológico , Humanos , Azeite de Oliva , Estresse Oxidativo , Complexo Repressor Polycomb 1
16.
Biometals ; 34(1): 67-85, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156436

RESUMO

The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 µg/mL (4.2-16.7 µM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MIC ≤ 0.25 µg/mL = 0.26 µM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Prata/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Piridinas/química , Prata/química
17.
Appl Microbiol Biotechnol ; 105(1): 147-168, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33191462

RESUMO

The scientific interest in the development of novel metal-based compounds as inhibitors of bacterial biofilm-related infections and alkaline phosphatase (ALP) deregulating effects is continuous and rising. In the current study, a novel crystallographically defined heteroleptic V(IV)-curcumin-bipyridine (V-Cur) complex with proven bio-activity was studied as a potential inhibitor of ALP activity and bacterial biofilm. The inhibitory effect of V-Cur was evaluated on bovine ALP, with two different substrates: para-nitrophenyl phosphate (pNPP) and adenosine triphosphate (ATP). The obtained results suggested that V-Cur inhibited the ALP activity in a dose-dependent manner (IC50 = 26.91 ± 1.61 µM for ATP, IC50 = 2.42 ± 0.12 µM for pNPP) exhibiting a mixed/competitive type of inhibition with both substrates tested. The evaluation of the potential V-Cur inhibitory effect on bacterial biofilm formation was performed on Gram (+) bacteria Staphylococcus aureus (S. aureus) and Gram (-) Escherichia coli (E. coli) cultures, and it positively correlated with inhibition of bacterial ALP activity. In silico study proved the binding of V-Cur at eukaryotic and bacterial ALP, and its interaction with crucial amino acids of the active sites, verifying complex's inhibitory potential. The findings suggested a specific anti-biofilm activity of V-Cur, offering a further dimension in the importance of metal complexes, with naturally derived products as biological ligands, as therapeutic agents against bacterial infections and ALP-associated diseases. KEY POINTS: • V-Cur inhibits bovine and bacterial alkaline phosphatases and bacterial biofilm formation. • Alkaline phosphatase activity correlates with biofilm formation. • In silico studies prove binding of the complex on alkaline phosphatase.


Assuntos
Curcumina , Staphylococcus aureus , Fosfatase Alcalina , Animais , Biofilmes , Bovinos , Simulação por Computador , Curcumina/farmacologia , Escherichia coli
18.
J Inorg Biochem ; 208: 111083, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32487364

RESUMO

Curcumin and quercetin are two of the most prominent natural polyphenols with a diverse spectrum of beneficial properties, including antioxidant, anti-inflammatory, chemopreventive and chemotherapeutic activity. The complexation of these natural products with bioactive transition metal ions can lead to the generation of novel metallodrugs with enhanced biochemical and pharmacological activities. Within this framework, the synthesis and detailed structural and physicochemical characterization of two novel complex assemblies of Cu(II) with curcumin and quercetin and the ancillary aromatic chelator 2,2'-bipyridine is presented. The two complexes represent the only crystallographically characterized structures with Cu(II) as the central metal ion and curcumin or quercetin as the ligands. The new complexes were biologically evaluated in vitro for their antioxidant potential, both exhibiting strong scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl assay, and their plasmid DNA binding/cleavage properties. Both complexes appear to be non-toxic in the eukaryotic experimental model Saccharomyces cerevisiae and merit further investigation of their pharmacological profile.


Assuntos
Complexos de Coordenação , Cobre , Curcumina , DNA/química , Plasmídeos/química , Quercetina , Saccharomyces cerevisiae/crescimento & desenvolvimento , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Curcumina/química , Curcumina/farmacologia , Quercetina/química , Quercetina/farmacologia
19.
J Inorg Biochem ; 208: 111085, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454249

RESUMO

The interaction of Cu(NO3)2·3H2O with the sulfonyl o-pyridine carboxamidoxime N'-(4-nitrophenylsulfonyloxy)picolinimidamide (L) resulted in the mononuclear complex [Cu(L1)2](L2)2 (1), where L1 = pyridine-2-carboxamidine ligand and (L2)- = 4-nitrobenzenesulfonate anion derived from the homolytic cleavage of the NO bond of L. The complex was characterized by diverse techniques including single-crystal X-ray crystallography. From the antimicrobial tests performed, complex 1 seems to be active against gram-negative bacterial strains. The complex binds tightly and reversibly to serum albumins and tightly to calf-thymus DNA via an intercalative mode and also via electrostatic interactions (as expected due to its cationic nature). Additionally, it interacts with (pBluescriptSK(+)) plasmid DNA in a concentration-dependent manner. The results from the present in silico molecular modeling simulations provide useful complementary insights for the elucidation of the mechanism of action of the studied complex at a molecular level. Molecular modeling calculations provide a molecular basis for the understanding of both the impairment of DNA by its binding with the studied complex and the ability of this compound to act as an antibacterial agent, most probably by its activity against DNA-gyrase, as well as for transportation through serum albumins and possible interaction with other protein targets involved in various diseases.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Complexos de Coordenação , Cobre , Substâncias Intercalantes , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , DNA/química , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Piridinas/química , Piridinas/farmacologia , Soroalbumina Bovina/química
20.
Front Pharmacol ; 11: 396, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300301

RESUMO

Human neurodegenerative diseases, such as Alzheimer's disease (AD), are not easily modeled in vitro due to the inaccessibility of brain tissue and the level of complexity required by existing cell culture systems. Three-dimensional (3D) brain organoid systems generated from human pluripotent stem cells (hPSCs) have demonstrated considerable potential in recapitulating key features of AD pathophysiology, such as amyloid plaque- and neurofibrillary tangle-like structures. A number of AD brain organoid models have also been used as platforms to assess the efficacy of pharmacological agents in disease progression. However, despite the fact that stem cell-derived brain organoids mimic early aspects of brain development, they fail to model complex cell-cell interactions pertaining to different regions of the human brain and aspects of natural processes such as cell differentiation and aging. Here, we review current advances and limitations accompanying several hPSC-derived organoid methodologies, as well as recent attempts to utilize them as therapeutic platforms. We additionally discuss comparative benefits and disadvantages of the various hPSC-derived organoid generation protocols and differentiation strategies. Lastly, we provide a comparison of hPSC-derived organoids to primary tissue-derived organoids, examining the future potential and advantages of both systems in modeling neurodegenerative disorders, especially AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA