Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(14): 7016-7025, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39070668

RESUMO

We report an in-depth study of the thermodynamic and magnetocaloric properties of a strongly frustrated magnet, Cs2Fe2(MoO4)3. The underlying structure belongs to the double trillium lattice, which consists of two FeII (S = 2) sites with easy-axis and easy-plane single-ion anisotropy. Detailed 57Fe Mössbauer spectroscopic investigations along with ligand-field calculations support the existence of disparate ground states. The antiferromagnetic ordered structure is presented by the propagation vector k = (0,0,0) with noncollinear magnetic moments of 2.97 µB (Fe1) and 0.17 µB (Fe2), respectively. Strong and disordered magnetic correlations exist in the temperature regime between T N ≈ 1.0 K and |θCW| ≈ 22 K. The large degeneracy of the ground state is investigated in terms of its magnetocaloric response. Magnetization and specific heat measurements indicate a significant magnetocaloric cooling efficiency, making this rare-earth-free compound a promising candidate for cryogenic magnetic refrigeration applications, with refrigeration capacity of 79 J kg-1 for Δ(µ0 H) = 8 T.

2.
Nanoscale ; 14(41): 15348-15363, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218075

RESUMO

Mixed-valence tungsten bronzes AxWO3 (A = alkali metal, NH4+, etc.) are a series of compounds with adaptive structural and compositional features that make them a hot research topic in thermoelectrics, electrochromics, catalysis or energy applications in battery electrodes. The mixed hexagonal lithium ammonium bronze Lix(NH4)yWO3 is a new member of this structural family whose properties are compared to those of the pure hexagonal tungsten bronze (NH4)xWO3. Surface and structural (nanoconfined) Li+ cations were characterized by 7Li single pulse excitation and 1H-7Li cross-polarization (CP) NMR experiments. CP build-up curves and two-dimensional heteronuclear correlation solid-state NMR techniques provide information about the spatial connectivity between different proton and Li+ species. At 500 °C the bronze structurally transforms from the hexagonal to a monoclinic phase, and defects are formed that are characterized through the Li+ environment. 7Li exchange spectroscopy (EXSY) NMR experiments provide information about the chemical exchange between the lithium species. The measured 7Li T1 and T2 relaxation time constants and the T1/T2 ratio allow characterizing the local strength of Li+ binding.

3.
Inorg Chem ; 61(26): 10108-10115, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35709382

RESUMO

The reactivity of FeMoO4 in CsCl fluxes has been investigated by thermal analysis and chemical reactions in evacuated silica ampules. The products have been characterized by ex situ X-ray diffraction methods. Metathesis reactions involving CsCl lead to the formation of Cs2Fe2(MoO4)3 and the salt adduct Cs2FeCl4·CsCl. A side reaction has been observed, which is associated with a decomposition of [MoO4]2- in CsCl fluxes yielding Cs2Mo2O7·CsCl, which contains the rare pyromolybdate anion, [Mo2O7]2-, located in the center of a ∞2[CsCl] hetero-honeycomb arrangement. This salt-inclusion type of compound has been studied further in terms of its formation starting from Cs2MoO4, MoO3, and CsCl. The intermediate adduct phase, Cs2MoO4·MoO3, contains uncharged ∞1[MoO2O2/2] chains that react with CsCl at elevated temperatures to Cs2Mo2O7·CsCl. Furthermore, the site preference for alkaline-metal cations (K+, Rb+, and Cs+) has been evaluated for a mixed substitution series. In accordance with the Pearson concept, the polarizability of the respect cation outweighs any size differences for the occupancy of the salt-intergrowth motif, the honeycomb part of the structure.

4.
Sci Rep ; 12(1): 3935, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273241

RESUMO

Preventing bacteria from adhering to material surfaces is an important technical problem and a major cause of infection. One of nature's defense strategies against bacterial colonization is based on the biohalogenation of signal substances that interfere with bacterial communication. Biohalogenation is catalyzed by haloperoxidases, a class of metal-dependent enzymes whose activity can be mimicked by ceria nanoparticles. Transparent CeO2/polycarbonate surfaces that prevent adhesion, proliferation, and spread of Pseudomonas aeruginosa PA14 were manufactured. Large amounts of monodisperse CeO2 nanoparticles were synthesized in segmented flow using a high-throughput microfluidic benchtop system using water/benzyl alcohol mixtures and oleylamine as capping agent. This reduced the reaction time for nanoceria by more than one order of magnitude compared to conventional batch methods. Ceria nanoparticles prepared by segmented flow showed high catalytic activity in halogenation reactions, which makes them highly efficient functional mimics of haloperoxidase enzymes. Haloperoxidases are used in nature by macroalgae to prevent formation of biofilms via halogenation of signaling compounds that interfere with bacterial cell-cell communication ("quorum sensing"). CeO2/polycarbonate nanocomposites were prepared by dip-coating plasma-treated polycarbonate panels in CeO2 dispersions. These showed a reduction in bacterial biofilm formation of up to 85% using P. aeruginosa PA14 as model organism. Besides biofilm formation, also the production of the virulence factor pyocyanin in is under control of the entire quorum sensing systems P. aeruginosa. CeO2/PC showed a decrease of up to 55% in pyocyanin production, whereas no effect on bacterial growth in liquid culture was observed. This indicates that CeO2 nanoparticles affect quorum sensing and inhibit biofilm formation in a non-biocidal manner.


Assuntos
Nanocompostos , Nanopartículas , Antibacterianos/farmacologia , Bactérias , Biofilmes , Pseudomonas aeruginosa , Piocianina , Percepção de Quorum , Fatores de Virulência
5.
Inorg Chem ; 61(3): 1659-1671, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35020386

RESUMO

In order to expand and exploit the useful properties of d6-iron(II) and d5-iron(III) complexes in potential magnetic, photophysical, or magnetooptical applications, crucial ligand-controlled parameters are the ligand field strength in a given coordination mode and the availability of suitable metal and ligand frontier orbitals for charge-transfer processes. The push-pull ligand 2,6-diguanidylpyridine (dgpy) features low-energy π* orbitals at the pyridine site and strongly electron-donating guanidinyl donors combined with the ability to form six-membered chelate rings for optimal metal-ligand orbital overlap. The electronic ground states of the pseudo-octahedral d6- and d5-complexes mer-[Fe(dgpy)2]2+, cis-fac-[Fe(dgpy)2]2+, and mer-[Fe(dgpy)2]3+ as well as their charge-transfer (CT) and metal-centered (MC) excited states are probed by variable temperature UV/vis absorption, NMR, EPR, and Mössbauer spectroscopy, magnetic susceptibility measurements at variable temperature as well as quantum chemical calculations.

6.
Dalton Trans ; 50(39): 14027-14037, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34546270

RESUMO

Selective oxidation of thioethers is an important reaction to obtain sulfoxides as synthetic intermediates for applications in the chemical industry, medicinal chemistry and biology or the destruction of warfare agents. The reduced Magneli-type tungsten oxide WO3-x possesses a unique oxidase-like activity which facilitates the oxidation of thioethers to the corresponding sulfoxides. More than 90% of the model system methylphenylsulfide could be converted to the sulfoxide with a selectivity of 98% at room temperature within 30 minutes, whereas oxidation to the corresponding sulfone was on a time scale of days. The concentration of the catalyst had a significant impact on the reaction rate. Reasonable catalytic effects were also observed for the selective oxidation of various organic sulfides with different substituents. The WO3-x nanocatalysts could be recycled at least 5 times without decrease in activity. We propose a metal oxide-catalyzed route based on the clean oxidant hydrogen peroxide. Compared to other molecular or enzyme catalysts the WO3-x system is a more robust redox-nanocatalyst, which is not susceptible to decomposition or denaturation under standard conditions. The unique oxidase-like activity of WO3-x can be used for a wide range of applications in synthetic, environmental or medicinal chemistry.


Assuntos
Óxidos , Tungstênio
7.
Dalton Trans ; 50(19): 6528-6538, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34002749

RESUMO

Solid state reactions are slow because the diffusion of atoms or ions through the reactant, intermediate and crystalline product phases is the rate-limiting step. This requires days or even weeks of high temperature treatment, and consumption of large amounts of energy. We employed spark-plasma sintering, an engineering technique that is used for high-speed consolidation of powders with a pulsed electric current passing through the sample to carry out the fluorination of niobium oxide in minute intervals. The approach saves time and large amounts of waste energy. Moreover, it allows the preparation of fluorinated niobium oxides on a gram scale using poly(tetrafluoroethylene) (®Teflon) scrap and without toxic chemicals. The synthesis can be upscaled easily to the kg range with appropriate sintering equipment. Finally, NbO2F and Nb3O7F prepared by spark plasma sintering show significant photoelectrocatalytic (PEC) oxygen evolution from water in terms of photocurrent density and incident photon-to-current efficiency (% IPCE), whereas NbO2F and Nb3O7F prepared by conventional high temperature chemistry show little to no PEC response. Our study is a proof of concept for the quick, clean and energy saving production of valuable photocatalysts from plastic waste.

8.
Nanoscale ; 13(17): 8146-8162, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33881034

RESUMO

Localized surface plasmon resonance properties in unconventional materials like metal oxides or chalcogenide semiconductors have been studied for use in signal detection and analysis in biomedicine and photocatalysis. We devised a selective synthesis of the tungsten oxides WO3-x and (NH4)xWO3 with tunable plasmonic properties. We selectively synthesized WO3-x nanorods with different aspect ratios and hexagonal tungsten bronzes (NH4)xWO3 as truncated nanocubes starting from ammonium metatungstate (NH4)6H2W12O40·xH2O. Both particles form from the same nuclei at temperatures >200 °C; monomer concentration and surfactant ratio are essential variables for phase selection. (NH4)xWO3 was the preferred reaction product only for fast heating rates (25 K min-1), slow stirring speeds (∼150 rpm) and high precursor concentrations. A proton nuclear magnetic resonance (1H-NMR) spectroscopic study of the reaction mechanism revealed that oleyl oleamide, formed from oleic acid and oleylamine upon heating, is a key factor for the selective formation of WO3-x nanorods. Since oleic acid and oleylamine are standard surfactants for the wet chemical synthesis of many metal and oxide nanoparticles, the finding that oleyl oleamide acts as a chemically active reagent above 250 °C may have implications for many nanoparticle syntheses. Oriented attachment of polyoxotungstate anions is proposed as a model to rationalize phase selectivity. Magic angle spinning (MAS) 1H-NMR and powder X-ray diffraction (PXRD) studies of the bronze after annealing under (non)inert conditions revealed an oxidative phase transition. WO3-x and (NH4)xWO3 show a strong plasmon absorption for near infra-red light between 800 and 3300 nm. The maxima of the plasmon bands shift systematically with the nanocrystal aspect ratio.

9.
Adv Mater ; 33(20): e2007434, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33837999

RESUMO

A general method to carry out the fluorination of metal oxides with poly(tetrafluoroethylene) (PTFE, Teflon) waste by spark plasma sintering (SPS) on a minute scale with Teflon is reported. The potential of this new approach is highlighted by the following results. i) The tantalum oxyfluorides Ta3 O7 F and TaO2 F are obtained from plastic scrap without using toxic or caustic chemicals for fluorination. ii) Short reaction times (minutes rather than days) reduce the process time the energy costs by almost three orders of magnitude. iii) The oxyfluorides Ta3 O7 F and TaO2 F are produced in gram amounts of nanoparticles. Their synthesis can be upscaled to the kg range with industrial sintering equipment. iv) SPS processing changes the catalytic properties: while conventionally prepared Ta3 O7 F and TaO2 F show little catalytic activity, SPS-prepared Ta3 O7 F and TaO2 F exhibit high activity for photocatalytic oxygen evolution, reaching photoconversion efficiencies up to 24.7% and applied bias to photoconversion values of 0.86%. This study shows that the materials properties are dictated by the processing which poses new challenges to understand and predict the underlying factors.

10.
Langmuir ; 36(46): 13804-13816, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33171051

RESUMO

Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simulation experiments. The as-synthesized CoO nanooctahedra exhibit superior electrocatalytic activity with long-term stability during oxygen evolution. The morphology of the CoO particles controls the electrocatalytic reaction through the distinct surface sites involved in the oxygen evolution reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA