Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 14918, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913218

RESUMO

The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Transporte/metabolismo , Resistência à Doença/imunologia , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/imunologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Botrytis/patogenicidade , Proteínas de Transporte/genética , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Rhizoctonia/patogenicidade , Ácido Salicílico/metabolismo
2.
Front Plant Sci ; 11: 331, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265974

RESUMO

Acyl-CoA-binding proteins (ACBPs), conserved at the acyl-CoA-binding domain, can bind acyl-CoA esters as well as transport them intracellularly. Six ACBPs co-exist in each model plant, dicot Arabidopsis thaliana (thale cress) and monocot Oryza sativa (rice). Although Arabidopsis ACBPs have been studied extensively, less is known about the rice ACBPs. OsACBP4 is highly induced by salt treatment, but down-regulated following pathogen infection, while OsACBP5 is up-regulated by both wounding and pathogen treatment. Their differential expression patterns under various stress treatments suggest that they may possess non-redundant functions. When expressed from the CaMV35S promoter, OsACBP4 and OsACBP5 were subcellularly localized to different endoplasmic reticulum (ER) domains in transgenic Arabidopsis. As these plants were not stress-treated, it remains to be determined if OsACBP subcellular localization would change following treatment. Given that the subcellular localization of proteins may not be reliable if not expressed in the native plant, this study addresses OsACBP4:GFP and OsACBP5:DsRED expression from their native promoters to verify their subcellular localization in transgenic rice. The results indicated that OsACBP4:GFP was targeted to the plasma membrane besides the ER, while OsACBP5:DsRED was localized at the apoplast, in contrast to their only localization at the ER in transgenic Arabidopsis. Differences in tagged-protein localization in transgenic Arabidopsis and rice imply that protein subcellular localization studies are best investigated in the native plant. Likely, initial targeting to the ER in a non-native plant could not be followed up properly to the final destination(s) unless it occurred in the native plant. Also, monocot (rice) protein targeting may not be optimally processed in a transgenic dicot (Arabidopsis), perhaps arising from the different processing systems for routing between them. Furthermore, changes in the subcellular localization of OsACBP4:GFP and OsACBP5:DsRED were not detectable following salt and pathogen treatment, respectively. These results suggest that OsACBP4 is likely involved in the intracellular shuttling of acyl-CoA esters and/or other lipids between the plasma membrane and the ER, while OsACBP5 appears to participate in the extracellular transport of acyl-CoA esters and/or other lipids, suggesting that they are non-redundant proteins in lipid trafficking.

3.
Proteomics ; 19(12): e1800368, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31054181

RESUMO

Plants are continuously infected by various pathogens throughout their lifecycle. Previous studies have reported that the expression of Class III acyl-CoA-binding proteins (ACBPs) such as the Arabidopsis ACBP3 and rice ACBP5 were induced by pathogen infection. Transgenic Arabidopsis AtACBP3-overexpressors (AtACBP3-OEs) displayed enhanced protection against the bacterial biotroph, Pseudomonas syringae, although they became susceptible to the fungal necrotroph Botrytis cinerea. A Class III ACBP from a monocot, rice (Oryza sativa) OsACBP5 was overexpressed in the dicot Arabidopsis. The resultant transgenic Arabidopsis lines conferred resistance not only to the bacterial biotroph P. syringae but to fungal necrotrophs (Rhizoctonia solani, B. cinerea, Alternaria brassicicola) and a hemibiotroph (Colletotrichum siamense). Changes in protein expression in R. solani-infected Arabidopsis OsACBP5-overexpressors (OsACBP5-OEs) were demonstrated using proteomic analysis. Biotic stress-related proteins including cell wall-related proteins such as FASCILIN-LIKE ARABINOGALACTAN-PROTEIN10, LEUCINE-RICH REPEAT EXTENSIN-LIKE PROTEINS, XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN4, and PECTINESTERASE INHIBITOR18; proteins associated with glucosinolate degradation including GDSL-LIKE LIPASE23, EPITHIOSPECIFIER MODIFIER1, MYROSINASE1, MYROSINASE2, and NITRILASE1; as well as a protein involved in jasmonate biosynthesis, ALLENE OXIDE CYCLASE2, were induced in OsACBP5-OEs upon R. solani infection. These results indicated that upregulation of these proteins in OsACBP5-OEs conferred protection against various plant pathogens.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Botrytis/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Proteômica , Pseudomonas syringae/patogenicidade , Rhizoctonia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...