Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 40(5): 621-629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458347

RESUMO

In the present study, we have obtained two exopolysaccharide (EPS)-producing thermophilic lactic acid bacteria (LAB) that were isolated from tropical fruits of Thailand. The two strains, designated LY45 and PY45, were identified as Pediococcus pentosaceus and Lactobacillus amylovorus, respectively. Both plant-derived LAB strains, which produce neutral EPSs together with the acidic one, can grow vigorously at 45°C and even at 50°C. Hyaluronidase (EC 3.2.1.35), which catalyzes the degradation of hyaluronic acid, activates an inflammatory reaction. Interestingly, EPSs produced by the LY45 and PY45 strains were found to inhibit hyaluronidase activity at the same order of IC50 values as did sodium cromoglicate and dipotassium glycyrrhizinate, which are well-known as anti-inflammatory agents. The LY45-derived neutral EPS consists of glucose and mannose as monosaccharide components, whereas the acidic one contains mainly mannose, together with glucose and galactose. On the other hand, although Lactobacillus amylovorus PY45 also produces neutral and acidic EPSs, the main monosaccharide in both EPSs is mannose, and glucose is a minor component. Furthermore, the PY45 strain may be probiotically and industrially useful because the microorganism can utilize starch and glycogen as carbon sources.


Assuntos
Frutas/microbiologia , Lactobacillus/química , Pediococcus/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Meios de Cultura , DNA Bacteriano/genética , Fermentação , Galactose/química , Glucose/química , Hialuronoglucosaminidase/antagonistas & inibidores , Ácido Láctico/metabolismo , Lactobacillus/genética , Manose/química , Pediococcus/genética , Açúcares/análise , Temperatura , Tailândia
2.
Biosci Microbiota Food Health ; 34(2): 45-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918672

RESUMO

A bacterial community analysis, using a culture-independent method (polymerase chain reaction-denaturing gradient gel electrophoresis), detected 17 species of bacteria including species of the genera Tetragenococcus, Lactobacillus, Pediococcus, Weissella Halanaerobium, Clostridium, and Sphingomonas in a traditional salty-fermented fish paste known as pla-ra or pa-daek in Thailand and Laos, which is used as a storage-stable multi-purpose seasoning. The representative genus of lactic acid bacteria seemed to vary in the 10 products collected from Thailand and Laos. Tetragenococci were common in products from central Thailand and Vientiane in Laos which had salinities of not less than 11% and pH values ranging from 5.6 to 6.1. However, lactobacilli were common in products from northern Thailand which had the lowest salinities (8.3-8.6%) and pH values (4.5-4.8) of all the samples examined. Two Lactobacillus and one Tetragenococcus species were detected in one product from northeastern Thailand containing 10% salt. These results suggest that salinity in pla-ra/pa-daek is an important determinant of the representative genus of lactic acid bacteria such as, Tetragenococcus or Lactobacillus. Additionally, differences in the acidity between these two groups seemed to be related to the production of d-/l-lactic acid in the lactic acid bacteria in each product. This is the first study to report a correlation between bacterial community structure and taste components in pla-ra/pa-daek products from various regions. This scientific work on a traditional fermented food will be useful in helping local producers meet differing consumer preferences in various regions.

3.
J Biosci Bioeng ; 110(5): 553-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20609623

RESUMO

Plaa-som is a Thai fermented fish prepared from freshwater fish and various ingredients. In this study, two strains of lactic acid bacteria (LAB) isolated from natural plaa-som fermentation were used as starter cultures: Lactobacillus plantarum IFRPD P15 and Lactobacillus reuteri IFRPD P17. These strains were used as a mixed starter culture for plaa-som using an air-drying method (laminar airflow) with sterilized rice grains as the filler. This method produced a suitable starter culture, which was maintained at 4 °C for more than 20 weeks. LAB were the dominant bacteria in the starter culture and produced high acidity from 24h until the end of fermentation. This resulted in decreased pH in plaa-som. L. plantarum IFRPD P15 was dominant as an acidity producer, whereas L. reuteri IFRPD P17 showed an ability to suppress and eliminate pathogenic bacteria such as Escherichia coli within 24h. The use of a single starter culture for plaa-som resulted in incomplete suppression of pathogenic bacteria and elimination of E. coli. Thus, L. plantarum IFRPD P15 and L. reuteri IFRPD P17 have great potential for use as a mixed starter culture in plaa-som fermentation and may possibly help to reduce fermentation time.


Assuntos
Produtos Pesqueiros/microbiologia , Microbiologia de Alimentos , Lactobacillus plantarum , Limosilactobacillus reuteri , Animais , Carga Bacteriana , Fermentação , Produtos Pesqueiros/análise , Peixes , Tecnologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/metabolismo , Limosilactobacillus reuteri/crescimento & desenvolvimento , Limosilactobacillus reuteri/metabolismo , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA