Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
iScience ; 26(11): 108104, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867962

RESUMO

Although membrane-containing dsDNA bacterial viruses are some of the most prevalent predators in aquatic environments, we know little about how they function due to their intractability in the laboratory. Here, we have identified and thoroughly characterized a new type of membrane-containing bacteriophage, Jorvik, that infects the freshwater mixotrophic model bacterium Rhodobacter capsulatus. Jorvik is extremely virulent, can persist in the host integrated into the RuBisCo operon and encodes two experimentally verified cell wall hydrolases. Jorvik-like prophages are abundant in the genomes of Alphaproteobacteria, are distantly related to known viruses of the class Tectiliviricetes, and we propose they should be classified as a new family. Crucially, we demonstrate how widely used phage manipulation methods should be adjusted to prevent loss of virus infectivity. Our thorough characterization of environmental phage Jorvik provides important experimental insights about phage diversity and interactions in microbial communities that are often unexplored in common metagenomic analyses.

2.
Microbiol Spectr ; : e0134223, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712674

RESUMO

Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.

3.
mBio ; 14(2): e0249022, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779718

RESUMO

Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.


Assuntos
Prófagos , Infecções Estafilocócicas , Humanos , Prófagos/genética , Staphylococcus aureus/genética , Lisogenia , Infecções Estafilocócicas/microbiologia , Staphylococcus , Fagos de Staphylococcus/genética , Proteínas de Membrana/genética
5.
Anal Chim Acta ; 1227: 340305, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089316

RESUMO

This study describes differentiation of methicillin-resistant Staphylococcus aureus (MRSA) isolates belonging to different genotype groups by the combination of electrophoretic techniques, transient isotachophoresis and micellar electrokinetic chromatography. MRSA isolates were separated in fused silica capillary with roughened inner surface prepared by etching with supercritical water. Separation temperature together with the rinsing procedure of the capillary turned out to be the key factors of successful analysis. The individual genotype groups were baseline-resolved in 40 min. Partial separation of the individual isolates within the groups was also observed. Relative standard deviations of the migration times of the isolate zones ranged from 0.32 to 0.79%. In addition, capability of the developed CE method to concentrate and separate MRSA isolates in clinical samples was proved by the analysis of blood sample.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Células Clonais , Genótipo , Staphylococcus aureus Resistente à Meticilina/genética , Dióxido de Silício/química
6.
Microbiol Spectr ; 10(3): e0012322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35435752

RESUMO

Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Prófagos/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/genética , Transcriptoma
7.
Pathogens ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35055999

RESUMO

Staphylococci from the Staphylococcus intermedius-Staphylococcus hyicus species group include numerous animal pathogens and are an important reservoir of virulence and antimicrobial resistance determinants. Due to their pathogenic potential, they are possible causative agents of zoonoses in humans; therefore, it is important to address the properties of these strains. Here we used a polyphasic taxonomic approach to characterize the coagulase-negative staphylococcal strain NRL/St 03/464T, isolated from the nostrils of a healthy laboratory rat during a microbiological screening of laboratory animals. The 16S rRNA sequence, MALDI-TOF mass spectrometry and positive urea hydrolysis and beta-glucuronidase tests clearly distinguished it from closely related Staphylococcus spp. All analyses have consistently shown that the closest relative is Staphylococcus chromogenes; however, values of digital DNA-DNA hybridization <35.3% and an average nucleotide identity <81.4% confirmed that the analyzed strain is a distinct Staphylococcus species. Whole-genome sequencing and expert annotation of the genome revealed the presence of novel variable genetic elements, including two plasmids named pSR9025A and pSR9025B, prophages, genomic islands and a composite transposon that may confer selective advantages to other bacteria and enhance their survival. Based on phenotypic, phylogenetic and genomic data obtained in this study, the strain NRL/St 03/464T (= CCM 9025T = LMG 31873T = DSM 111348T) represents a novel species with the suggested name Staphylococcus ratti sp. nov.

8.
Nanoscale ; 13(31): 13538-13549, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477758

RESUMO

The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Animais , Humanos , Microscopia de Força Atômica , Staphylococcus aureus , Ressonância de Plasmônio de Superfície
9.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980677

RESUMO

Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10-4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies.IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/virologia , Transdução Genética , Humanos , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/efeitos dos fármacos , Virulência
10.
Talanta ; 224: 121800, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379027

RESUMO

Phage therapy could offer a safe and effective alternative to antibiotic treatment of infections caused by Gram-positive bacterium Staphylococcus aureus that have emerged as a significant threat in hospital and community environment and is attracting growing interest among clinicians. The legislation process of approving the phage therapeutics by pharmaceutical authorities requires rapid analytical techniques for assessment of phage activity. Here, we present a three-step method for on-line monitoring the phage effect on bacterial cells dynamically adhered from microliter volumes of high conductivity matrix onto the inner surface of fused silica capillary with a part etched with supercritical water. Phage K1/420 particles of the Kayvirus genus generated by propagation on the host S. aureus cells together with the uninfected cells were concentrated, separated and detected using capillary electrophoretic methods. The phage interactions with selected S. aureus strains exhibiting differences in phage susceptibility were compared. The method allowed determination of the phage burst size and time of phage latent period in analyzed strains. Apart from enumeration of bacteriophages by the plaque assays, the proposed method is suitable for phage activity testing.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Antibacterianos , Humanos , Dióxido de Silício , Staphylococcus aureus
11.
Syst Appl Microbiol ; 43(5): 126112, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847787

RESUMO

Bacteria of the genus Massilia often colonize extreme ecosystems, however, a detailed study of the massilias from the Antarctic environment has not yet been performed. Here, sixty-four Gram-stain-negative, aerobic, motile rods isolated from different environmental samples on James Ross Island (Antarctica) were subjected to a polyphasic taxonomic study. The psychrophilic isolates exhibited slowly growing, moderately slimy colonies revealing bold pink-red pigmentation on R2A agar. The set of strains exhibited the highest 16S rRNA gene sequence similarities (99.5-99.9%) to Massilia violaceinigra B2T and Massilia atriviolacea SODT and formed several phylogenetic groups based on the analysis of gyrB and lepA genes. Phenotypic characteristics allowed four of them to be distinguished from each other and from their closest relatives. Compared to the nearest phylogenetic neighbours the set of six genome-sequenced representatives exhibited considerable phylogenetic distance at the whole-genome level. Bioinformatic analysis of the genomic sequences revealed a high number of putative genes involved in oxidative stress response, heavy-metal resistance, bacteriocin production, the presence of putative genes involved in nitrogen metabolism and auxin biosynthesis. The identification of putative genes encoding aromatic dioxygenases suggests the biotechnology potential of the strains. Based on these results four novel species and one genomospecies of the genus Massilia are described and named Massilia rubra sp. nov. (P3094T=CCM 8692T=LMG 31213T), Massilia aquatica sp. nov. (P3165T=CCM 8693T=LMG 31211T), Massilia mucilaginosa sp. nov. (P5902T=CCM 8733T=LMG 31210T), and Massilia frigida sp. nov. (P5534T=CCM 8695T=LMG 31212T).


Assuntos
Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Oxalobacteraceae/classificação , Oxalobacteraceae/isolamento & purificação , Rios/microbiologia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Genes de RNAr , Genoma Bacteriano , Oxalobacteraceae/genética , Oxalobacteraceae/fisiologia , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Anal Chem ; 92(18): 12304-12311, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32815709

RESUMO

Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.


Assuntos
Bacteriófagos/química , Pinças Ópticas , Staphylococcus aureus/química , Análise Espectral Raman
13.
Antibiotics (Basel) ; 9(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824115

RESUMO

Antibacterial antibiotic therapy has played an important role in the treatment of bacterial infections for almost a century. The increasing resistance of pathogenic bacteria to antibiotics leads to an attempt to use previously neglected antibacterial therapies. Here we provide information on the two recombinantly modified antistaphylococcal enzymes derived from lysostaphin (LYSSTAPH-S) and endolysin (LYSDERM-S) derived from kayvirus 812F1 whose target sites reside in the bacterial cell wall. LYSSTAPH-S showed a stable antimicrobial effect over 24-h testing, even in concentrations lower than 1 µg/mL across a wide variety of epidemiologically important sequence types (STs) of methicillin-resistant Staphylococcus aureus (MRSA), especially in the stationary phase of growth (status comparable to chronic infections). LYSDERM-S showed a less potent antimicrobial effect that lasted only a few hours at concentrations of 15 µg/mL and higher. Our data indicate that these antimicrobial enzymes could be of substantial help in the treatment of chronic MRSA wound infections.

14.
ACS Infect Dis ; 6(10): 2745-2755, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32856900

RESUMO

A method for the fast isolation, propagation, and characterization of very low count bacteriophages active against pathogenic bacterial strains is described in this study. Bacteriophages with a count of 102 phage particles were dynamically adhered from the maximum 10 mL blood plasma sample onto the nanostructured part of the fused silica capillary. One-step propagation of phage particles of genus Kayvirus inside the etched capillary on 104Staphylococcus aureus host cells increased their number to 6 × 104 phage particles. Phage particles were concentrated online and separated by capillary electrophoretic methods. No phage replication occurred when the phage-resistant S. aureus or Escherichia coli cells were used. Two-step phage propagation in the capillary allowed an increase in the total virion count to up to 6 × 105 phage particles and subsequent off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of the phage zone collected after capillary electrophoresis. Relative standard deviations of the phage peak area were at most 2.3%. We expect that the method of isolating bacteriophages from blood plasma and their simultaneous identification will facilitate clinical studies of phage preparations and contribute to pharmacokinetics studies during phage therapy. This approach is also suitable for capturing and enriching new phages from the environment when a susceptible indicator strain is available.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fagos de Staphylococcus/genética , Staphylococcus aureus
15.
Nat Commun ; 11(1): 3034, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541663

RESUMO

Alphaproteobacteria, which are the most abundant microorganisms of temperate oceans, produce phage-like particles called gene transfer agents (GTAs) that mediate lateral gene exchange. However, the mechanism by which GTAs deliver DNA into cells is unknown. Here we present the structure of the GTA of Rhodobacter capsulatus (RcGTA) and describe the conformational changes required for its DNA ejection. The structure of RcGTA resembles that of a tailed phage, but it has an oblate head shortened in the direction of the tail axis, which limits its packaging capacity to less than 4,500 base pairs of linear double-stranded DNA. The tail channel of RcGTA contains a trimer of proteins that possess features of both tape measure proteins of long-tailed phages from the family Siphoviridae and tail needle proteins of short-tailed phages from the family Podoviridae. The opening of a constriction within the RcGTA baseplate enables the ejection of DNA into bacterial periplasm.


Assuntos
Bacteriófagos/fisiologia , Técnicas de Transferência de Genes , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/virologia , Siphoviridae/fisiologia , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal , Siphoviridae/genética , Siphoviridae/ultraestrutura
16.
Front Microbiol ; 11: 663, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425898

RESUMO

The prevalence of Staphylococcus aureus as an aggressive pathogen resistant to multiple antibiotics causing nosocomial and community-acquired infections is increasing with limited therapeutic options. Macrolide-lincosamide streptogramin B (MLSB) family of antibiotics represents an important alternative therapy for staphylococcal infections. This study was conducted over a period of five years from August 2013 to July 2018 to investigate the prevalence and molecular epidemiology in Iran of inducible resistance in S. aureus. In the current study, 126 inducible methicillin-resistant S. aureus (MRSA) (n = 106) and methicillin-sensitive S. aureus (MSSA) (n = 20) isolates were characterized by in vitro susceptibility analysis, resistance and virulence encoding gene distribution, phenotypic and genotypic analysis of biofilm formation, prophage typing, S. aureus protein A locus (spa) typing, staphylocoagulase (SC) typing, staphylococcal cassette chromosome mec (SCCmec) typing, and multilocus sequence typing. Of the 126 isolates, 76 (60.3%) were classified as hospital onset, and 50 (39.7%) were classified as community onset (CO). Biofilm formation was observed in 97 strains (77%). A total of 14 sequence types (STs), 26 spa types, 7 coagulase types, 9 prophage types, 3 agr types (no agr IV), and 9 clonal complexes (CCs) were identified in this study. The prevalence of the inducible MLSB (iMLSB) S. aureus increased from 7.5% (25/335) to 21.7% (38/175) during the study period. The iMLSB MRSA isolates were distributed in nine CCs, whereas the MSSA isolates were less diverse, which mainly belonged to CC22 (7.95%) and CC30 (7.95%). High-level mupirocin-resistant strains belonged to ST85-SCCmec IV/t008 (n = 4), ST5-SCCmec IV/t002 (n = 4), ST239-SCCmec III/t631 (n = 2), and ST8-SCCmec IV/t064 (n = 2) clones, whereas low-level mupirocin-resistant strains belonged to ST15-SCCmec IV/t084 (n = 5), ST239-SCCmec III/t860 (n = 3), and ST22-SCCmec IV/t790 (n = 3) clones. All the fusidic acid-resistant iMLSB isolates were MRSA and belonged to ST15-SCCmec IV/t084 (n = 2), ST239-SCCmec III/t030 (n = 2), ST1-SCCmec V/t6811 (n = 1), ST80-SCCmec IV/t044 (n = 1), and ST59-SCCmec IV/t437 (n = 1). The CC22 that was predominant in 2013-2014 (36% of the isolates) had almost disappeared in 2017-2018, being replaced by the CC8, which represented 39.5% of the 2017-2018 isolates. This is the first description of temporal shifts of iMLSB S. aureus isolates in Iran that identifies predominant clones and treatment options for iMLSB S. aureus-related infections.

17.
Mikrochim Acta ; 187(3): 177, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076849

RESUMO

The properties of staphylococcal phages from the Siphoviridae, Podoviridae, and Myoviridae families were monitored using capillary electrophoretic methods on fused-silica capillaries with different morphology of surface roughness. Isoelectric points of the examined phages were determined by capillary isoelectric focusing in the original, smooth fused-silica capillary, and they ranged from 3.30 to 3.85. For capillary electrophoresis of phages, fused-silica capillaries with the "pock" and "cone" roughened surface types were prepared by etching a part of the capillary with supercritical water. The best resolution of the individual phages (to range from 3.2 to 4.6) was achieved with the "cone" surface-type fused-silica capillary. Direct application of phage K1/420 at the infection site, represented by human plasma or full blood spiked with Staphylococcus aureus, was on-line monitored by micellar electrokinetic chromatography. The phage particles were dynamically adhered onto the roughened surface of the capillary from 10 µL of the prepared sample at the optimized flow rate of 6.5 µL min-1. The limit of detection was determined to be 104 phage particles. The linearity of the calibration lines was characterized by the regression coefficient, R2 = 0.998. The relative standard deviation (RSD) of the peak area, calculated from ten independent measurements, was (±) 2%. After analysis, viability of the detected phages was verified by the modified "double-layer drop assay" method, and collected phage fractions were simultaneously off-line analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Graphical abstract.


Assuntos
Bacteriófagos/patogenicidade , Coleta de Amostras Sanguíneas/instrumentação , Dióxido de Silício/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos
18.
Microorganisms ; 8(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024111

RESUMO

Members of the genus Staphylococcus are widespread in nature and occupy a variety of niches, however, staphylococcal colonization of animals in the Antarctic environment has not been adequately studied. Here, we describe the first isolation and characterization of two Staphylococcus intermedius group (SIG) members, Staphylococcus delphini and Staphylococcus pseudintermedius, in Antarctic wildlife. Staphylococcus delphini were found exclusively in Adélie penguins. The report of S. pseudintermedius from Weddell seals confirmed its occurrence in all families of the suborder Caniformia. Partial RNA polymerase beta-subunit (rpoB) gene sequencing, repetitive PCR fingerprinting with the (GTG)5 primer, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry gave consistent identification results and proved to be suitable for identifying SIG members. Comparative genomics of S. delphini isolates revealed variable genomic elements, including new prophages, a novel phage-inducible chromosomal island, and numerous putative virulence factors. Surface and extracellular protein distribution were compared between genomes and showed strain-specific profiles. The pathogenic potential of S. delphini was enhanced by a novel type of exfoliative toxin, trypsin-like serine protease cluster, and enterotoxin C. Detailed analysis of phenotypic characteristics performed on six Antarctic isolates of S. delphini and eight reference strains from different animal sources enabled us to emend the species description of S. delphini.

19.
Int J Syst Evol Microbiol ; 70(12): 6364-6372, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33599603

RESUMO

A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Hymenobacter. The closest relative was Hymenobacter humicola CCM 8763T, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342T and P5252T, respectively. Average nucleotide identity, digital DNA-DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252T and P5342T represent two distinct Hymenobacter species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C16:1 ω7c/C16:1ω6c), C16:1ω5c, summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), anteiso-C15:0 and iso-C15 : 0 for all isolates. Based on the obtained results, two novel species are proposed, for which the names Hymenobacter terrestris sp. nov. (type strain P5252T=CCM 8765T=LMG 31495T) and Hymenobacter lapidiphilus sp. nov. (type strain P5342T=CCM 8764T=LMG 30613T) are suggested.


Assuntos
Cytophagaceae/classificação , Filogenia , Microbiologia do Solo , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Ilhas , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Int J Syst Evol Microbiol ; 70(1): 302-308, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31617844

RESUMO

A taxonomic study was carried out on four Gram-stain-negative strains P5773T, P6169, P4708 and P6245, isolated from anus or mouth samples of Weddell seals at James Ross Island, Antarctica. The results of initial 16S rRNA gene sequence analysis showed that all four strains formed a group placed in the genus Pseudomonas and found Pseudomonas guineae and Pseudomonas peli to be their closest neighbours with 99.9 and 99.2 % sequence similarity, respectively. Sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of isolates to P. peli (rpoD) and to P. guineae (rpoB and gyrB). The average nucleotide identity value below 86 %, as calculated from the whole-genome sequence data, showed the low genomic relatedness of P5773T to its phylogenetic neighbours. The complete genome of strain P5773T was 4.4 Mb long and contained genes encoding proteins with biotechnological potential. The major fatty acids of the seal isolates were summed feature 8 (C18 : 1 ω7c), summed feature 3 (C16 : 1 ω 7 c/C16  : 1 ω6c) and C16:0. The major respiratory quinone was Q9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Putrescine and spermidine are predominant in the polyamine pattern. Further characterization performed using repetitive sequence-based PCR fingerprinting and MALDI-TOF MS analysis showed that the studied isolates formed a coherent cluster separated from the remaining Pseudomonas species and confirmed that they represent a novel species within the genus Pseudomonas, for which the name Pseudomonas leptonychotis sp. nov. is suggested. The type strain is P5773T (=CCM 8849T=LMG 30618T).


Assuntos
Filogenia , Pseudomonas/classificação , Focas Verdadeiras/microbiologia , Animais , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...