Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 94(21): 212303, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-16090313

RESUMO

We have searched for a deeply bound kaonic state by using the FINUDA spectrometer installed at the e(+)e(-) collider DAPhiNE. Almost monochromatic K(-)'s produced through the decay of phi(1020) mesons are used to observe K(-) absorption reactions stopped on very thin nuclear targets. Taking this unique advantage, we have succeeded to detect a kaon-bound state K(-)pp through its two-body decay into a Lambda hyperon and a proton. The binding energy and the decay width are determined from the invariant-mass distribution as 115(+6)(-5)(stat)(+3)(-4)(syst) MeV and 67(+14)(-11)(stat)(+2)(-3)(syst) MeV, respectively.

2.
Adv Space Res ; 34(6): 1338-46, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15881774

RESUMO

Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.


Assuntos
DNA/efeitos da radiação , Modelos Teóricos , Imagens de Fantasmas , Proteção Radiológica , Atividade Solar , Astronautas , Dano ao DNA , Relação Dose-Resposta à Radiação , Humanos , Cristalino/efeitos da radiação , Modelos Anatômicos , Método de Monte Carlo , Doses de Radiação , Eficiência Biológica Relativa , Pele/efeitos da radiação , Vísceras/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...