Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(11): 3928-3935, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487225

RESUMO

Anion exchange membrane fuel cells are a potentially cost-effective energy conversion technology, however, the electrocatalyst for the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics under alkaline conditions. Herein, we report that Ru-based nanosheets with amorphous-crystalline heterointerfaces of Ru and Ti-doped RuO2 (a/c-Ru/Ti-RuO2) can serve as a highly efficient HOR catalyst with a mass activity of 4.16 A mgRu-1, which is 19.8-fold higher than that of commercial Pt/C. Detailed characterization studies show that abundant amorphous-crystalline heterointerfaces of a/c-Ru/Ti-RuO2 nanosheets provide oxygen vacancies and unsaturated coordination bonds for balancing adsorption of hydrogen and hydroxyl species on Ru active sites to elevate HOR activity. Moreover, Ti doping can facilitate CO oxidation, leading to enhanced strength to CO poisoning. This work provides a strategy for enhancing alkaline HOR performance over Ru-based catalysts with heteroatom and heterointerface dual-engineering, which will attract immediate interest in chemistry, materials science and beyond.

2.
Nat Commun ; 15(1): 1447, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365760

RESUMO

Exploring an active and cost-effective electrocatalyst alternative to carbon-supported platinum nanoparticles for alkaline hydrogen evolution reaction (HER) have remained elusive to date. Here, we report a catalyst based on platinum single atoms (SAs) doped into the hetero-interfaced Ru/RuO2 support (referred to as Pt-Ru/RuO2), which features a low HER overpotential, an excellent stability and a distinctly enhanced cost-based activity compared to commercial Pt/C and Ru/C in 1 M KOH. Advanced physico-chemical characterizations disclose that the sluggish water dissociation is accelerated by RuO2 while Pt SAs and the metallic Ru facilitate the subsequent H* combination. Theoretical calculations correlate with the experimental findings. Furthermore, Pt-Ru/RuO2 only requires 1.90 V to reach 1 A cm-2 and delivers a high price activity in the anion exchange membrane water electrolyzer, outperforming the benchmark Pt/C. This research offers a feasible guidance for developing the noble metal-based catalysts with high performance and low cost toward practical H2 production.

3.
Adv Mater ; 36(18): e2312140, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38241656

RESUMO

Noble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.4%. The unique properties of amorphous bimetallic oxides and formation of atomic channels have been evidenced by detailed experimental characterizations and theoretical simulations. Moreover, the universality of the current strategy is validated by other binary oxides. When Cu2IrOx with atomic channels (Cu2IrOx-AE) is used as catalyst for oxygen evolution reaction (OER), the mass activity and turnover frequency value of Cu2IrOx-AE are 1-2 orders of magnitude higher than CuO/IrO2 and Cu2IrOx without atomic channels, largely outperforming the reported OER catalysts. Theoretical calculations reveal that the formation of atomic channels leads to various Ir sites, on which the proton of adsorbed *OH can transfer to adjacent O atoms of [IrO6]. This work may attract immediate interest of researchers in material science, chemistry, catalysis, and beyond.

4.
Nat Commun ; 15(1): 472, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212300

RESUMO

Reversible proton ceramic electrochemical cells are promising solid-state ion devices for efficient power generation and energy storage, but necessitate effective air electrodes to accelerate the commercial application. Here, we construct a triple-conducting hybrid electrode through a stoichiometry tuning strategy, composed of a cubic phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ and a hexagonal phase Ba4Sr4(Co0.8Fe0.2)4O16-δ. Unlike the common method of creating self-assembled hybrids by breaking through material tolerance limits, the strategy of adjusting the stoichiometric ratio of the A-site/B-site not only achieves strong interactions between hybrid phases, but also can efficiently modifies the phase contents. When operate as an air electrode for reversible proton ceramic electrochemical cell, the hybrid electrode with unique dual-phase synergy shows excellent electrochemical performance with a current density of 3.73 A cm-2 @ 1.3 V in electrolysis mode and a peak power density of 1.99 W cm-2 in fuel cell mode at 650 °C.

5.
Inorg Chem ; 63(5): 2431-2442, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258796

RESUMO

The coupled NO-vibrational peaks [IR νNO 1775 s, 1716 vs, 1668 vs cm-1 (THF)] between two adjacent [Fe(NO)2] groups implicate the electron delocalization nature of the singly O-phenoxide-bridged dinuclear dinitrosyliron complex (DNIC) [Fe(NO)2(µ-ON2Me)Fe(NO)2] (1). Electronic interplay between [Fe(NO)2] units and [ON2Me]- ligand in DNIC 1 rationalizes that "hard" O-phenoxide moiety polarizes iron center(s) of [Fe(NO)2] unit(s) to enforce a "constrained" π-conjugation system acting as an electron reservoir to bestow the spin-frustrated {Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2- electron configuration (Stotal = 1/2). This system plays a crucial role in facilitating the ligand-based redox interconversion, working in harmony to control the storage and redox-triggered transport of the [Fe(NO)2]10 unit, while preserving the {Fe(NO)2}9 core in DNICs {Fe(NO)2}9-[·ON2Me]2- [K-18-crown-6-ether)][(ON2Me)Fe(NO)2] (2) and {Fe(NO)2}9-[·ON2Me] [(ON2Me)Fe(NO)2][PF6] (3). Electrochemical studies suggest that the redox interconversion among [{Fe(NO)2}9-[·ON2Me]2-] DNIC 3 ↔ [{Fe(NO)2}9-[ON2Me]-] ↔ [{Fe(NO)2}9-[·ON2Me]] DNIC 2 are kinetically feasible, corroborated by the redox shuttle between O-bridged dimerized [(µ-ONMe)2Fe2(NO)4] (4) and [K-18-crown-6-ether)][(ONMe)Fe(NO)2] (5). In parallel with this finding, the electronic structures of [{Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2-] DNIC 1, [{Fe(NO)2}9-[·ON2Me]2-] DNIC 2, [{Fe(NO)2}9-[·ON2Me]] DNIC 3, [{Fe(NO)2}9-[ONMe]-]2 DNIC 4, and [{Fe(NO)2}9-[·ONMe]2-] DNIC 5 are evidenced by EPR, SQUID, and Fe K-edge pre-edge analyses, respectively.

6.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166379

RESUMO

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

7.
Nano Lett ; 24(4): 1205-1213, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38214250

RESUMO

Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.

8.
Adv Mater ; 36(7): e2308839, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37906727

RESUMO

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.

9.
Inorg Chem ; 63(1): 784-794, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38153269

RESUMO

Nanosized zerovalent iron (NZVI) Fe@Fe3O4 with a core-shell structure derived from photocatalytic MeOH aqueous solution of dinitrosyl iron complex (DNIC) [(N3MDA)Fe(NO)2] (N3MDA = N,N-dimethyl-2-(((1-methyl-1H-imidazole-2-yl)methylene)amino)ethane-1-amine) (1-N3MDA), eosin Y, and triethylamine (TEA) is demonstrated. The NZVI Fe@Fe3O4 core shows a high percentage of zerovalent iron (Fe0 %) and is stabilized by a hydrophobic organic support formed through the photodegradation of eosin Y hybridized with the N3MDA ligand. In addition to its well-known reductive properties in wastewater treatment and groundwater remediation, NZVI demonstrates the ability to form heterostructures when it interacts with metal ions. In this research, Co2+ is employed as a model contaminant and reacted with NZVI Fe@Fe3O4 to result in the formation of a distinct Fe-Co heterostructure, cracked NZVI (CNZVI). The slight difference in the standard redox potentials between Fe2+ and Co2+, the magnetic properties of Co2+, and the absence of surface hydroxides of Fe@Fe3O4 enable NZVI to mildly reduce Co2+ and facilitate Co2+ penetration into the iron core. Taking advantage of the well-dispersed nature of CNZVI on an organic support, the reduction in particle size due to Co2+ penetration, and Fe-Co synergism, CNZVI is employed as a catalyst in the alkaline oxygen evolution reaction (OER). Remarkably, CNZVI exhibits a highly efficient OER performance, surpassing the benchmark IrO2 catalyst. These findings show the potential of using NZVI as a template for synthesizing highly efficient OER catalysts. Moreover, the study demonstrates the possibility of repurposing waste materials from water treatment as valuable resources for catalytic energy conversion, particularly in water oxidation processes.

10.
J Am Chem Soc ; 145(51): 28010-28021, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38095915

RESUMO

Phase regulation of noble metal-based nanomaterials provides a promising strategy for boosting the catalytic performance. However, realizing the continuous phase modulation in two-dimensional structures and unveiling the relevant structure-performance relationship remain significant challenges. In this work, we present the first example of continuous phase modulation in a library of Pd-Te hexagonal nanoplates (HNPs) from cubic-phase Pd4Te, rhombohedral-phase Pd20Te7, rhombohedral-phase Pd8Te3, and hexagonal-phase PdTe to hexagonal-phase PdTe2. Notably, the continuous phase regulation of the well-defined Pd-Te HNPs enables the successful modulation of the distance between adjacent Pd active sites, triggering an exciting way for tuning the relevant catalytic reactions intrinsically. The proof-of-concept oxygen reduction reaction (ORR) experiment shows a Pd-Pd distance-dependent ORR performance, where the hexagonal-phase PdTe HNPs present the best electrochemical performance in ORR (mass activity and specific activity of 1.02 A mg-1Pd and 1.83 mA cm-2Pd at 0.9 V vs RHE). Theoretical investigation reveals that the increased Pd-Pd distance relates to the weak *OH adsorption over Pd-Te HNPs, thus contributing to the remarkable ORR activity of PdTe HNPs. This work advances the phase-controlled synthesis of noble metal-based nanostructures, which gives huge impetus to the design of high-efficiency nanomaterials for diverse applications.

11.
Small ; : e2307910, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072788

RESUMO

To investigate synergistic effect between geometric and electronic structures on directing CO2 RR selectivity, water phase synthetic protocol and surface architecture engineering strategy are developed to construct monodispersed Bi-doped Cu-based nanocatalysts. The strongly correlated catalytic directionality and Bi3+ dopant can be rationalized by the regulation of [*COOH]/[*CO] adsorption capacities through the appropriate doping of Bi3+ electronic modulator, resulting in volcano relationship between FECO /TOFCO and surface EVBM values. Spectroscopic study reveals that the dual-site binding mode ([Cu─µâ”€C(═O)O─Bi3+ ]) enabled by Cu1 Bi3+ 2 motif in single-phase Cu150 Bi1 nanocatalyst drives CO2-to-CO conversion. In contrast, the study of dynamic Bi speciation and phase transformation in dual-phase Cu50 Bi1 nanocatalyst unveils that the Bi0 -Bi0 contribution emerges at the expense of BOC phase, suggesting metallic Bi0 phase acting as [H]˙ formation center switches CO2 RR selectivity toward CO2-to-HCOO- conversion via [*OCHO] and [*OCHOK] intermediates. This work provides significant insight into how geometric architecture cooperates with electronic effect and catalytic motif/phase to guide the selectivity of electrocatalytic CO2 reduction through the distinct surface-bound intermediates and presents molecular-level understanding of catalytic mechanism for CO/HCOO- formation.

12.
J Am Chem Soc ; 145(50): 27757-27766, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38059839

RESUMO

H2O2 photosynthesis has attracted great interest in harvesting and converting solar energy to chemical energy. Nevertheless, the high-efficiency process of H2O2 photosynthesis is driven by the low H2O2 productivity due to the recombination of photogenerated electron-hole pairs, especially in the absence of a sacrificial agent. In this work, we demonstrate that ultrathin ZnIn2S4 nanosheets with S vacancies (Sv-ZIS) can serve as highly efficient catalysts for H2O2 photosynthesis via O2/H2O redox. Mechanism studies confirm that Sv in ZIS can extend the lifetimes of photogenerated carriers and suppress their recombination, which triggers the O2 reduction and H2O oxidation to H2O2 through radical initiation. Theoretical calculations suggest that the formation of Sv can strongly change the coordination structure of ZIS, modulating the adsorption abilities to intermediates and avoiding the overoxidation of H2O to O2 during O2/H2O redox, synergistically promoting 2e- O2 reduction and 2e- H2O oxidation for ultrahigh H2O2 productivity. The optimal catalyst displays a H2O2 productivity of 1706.4 µmol g-1 h-1 under visible-light irradiation without a sacrificial agent, which is ∼29 times higher than that of pristine ZIS (59.4 µmol g-1 h-1) and even much higher than those of reported photocatalysts. Impressively, the apparent quantum efficiency is up to 9.9% at 420 nm, and the solar-to-chemical conversion efficiency reaches ∼0.81%, significantly higher than the value for natural synthetic plants (∼0.10%). This work provides a facile strategy to separate the photogenerated electron-hole pairs of ZIS for H2O2 photosynthesis, which may promote fundamental research on solar energy harvest and conversion.

13.
Small ; : e2310036, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38126916

RESUMO

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.

14.
Angew Chem Int Ed Engl ; 62(50): e202311304, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872849

RESUMO

Herein, we have specifically designed two metalated porous organic polymers (Zn-POP and Co-POP) for syngas (CO+H2 ) production from gaseous CO2 . The variable H2 /CO ratio of syngas with the highest efficiency was produced in water medium (without an organic hole scavenger and photosensitizer) by utilizing the basic principle of Lewis acid/base chemistry. Also, we observed the formation of entirely different major products during photocatalytic CO2 reduction and water splitting with the help of the two catalysts, where CO (145.65 µmol g-1 h-1 ) and H2 (434.7 µmol g-1 h-1 ) production were preferentially obtained over Co-POP & Zn-POP, respectively. The higher electron density/better Lewis basic nature of Co-POP was investigated further using XPS, XANES, and NH3 -TPD studies, which considerably improve CO2 activation capacity. Moreover, the structure-activity relationship was confirmed via in situ DRIFTS and DFT studies, which demonstrated the formation of COOH* intermediate along with the thermodynamic feasibility of CO2 reduction over Co-POP while water splitting occurred preferentially over Zn-POP.

15.
Sci Adv ; 9(37): eadf9144, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713495

RESUMO

Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO2) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H2SO4. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO2 toward OER. A PEMWE using M-RuIrFeCoNiO2 catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.

16.
Adv Mater ; 35(42): e2305659, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620729

RESUMO

Oxygen evolution reaction (OER) plays a key role in proton exchange membrane water electrolysis (PEMWE), yet the electrocatalysts still suffer from the disadvantages of low activity and poor stability in acidic conditions. Here, a new class of CdRu2 IrOx nanoframes with distorted structure for acidic OER is successfully fabricated. Impressively, CdRu2 IrOx displays an ultralow overpotential of 189 mV and an ultralong stability of 1500 h at 10 mA cm⁻2 toward OER in 0.5 M H2 SO4 . Moreover, a PEMWE using the distorted CdRu2 IrOx can be steadily operated at 0.1 A cm⁻2 for 90 h. Microstructural analyses and X-ray absorption spectroscopy (XAS) demonstrate that the synergy between Ru and Ir in CdRu2 IrOx induces the distortion of Ru-O, Ir-O, and Ru-M (M = Ru, Ir) bonds. In situ XAS indicates that the applied potential leads to the deformation octahedral structure of RuOx /IrOx and the formation of stable Ru5+ species for OER. Theoretical calculations also reveal that the distorted structures can reduce the energy barrier of rate-limiting step during OER. This work provides an efficient strategy for constructing structural distortion to achieve significant enhancement on the activity and stability of OER catalysts.

17.
Nat Commun ; 14(1): 4638, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532729

RESUMO

Ligands and additives are often utilized to stabilize low-valent catalytic metal species experimentally, while their role in suppressing metal deposition has been less studied. Herein, an on-cycle mechanism is reported for CoCl2bpy2 catalyzed Negishi-type cross-coupling. A full catalytic cycle of this kind of reaction was elucidated by multiple spectroscopic studies. The solvent and ligand were found to be essential for the generation of catalytic active Co(I) species, among which acetonitrile and bipyridine ligand are resistant to the disproportionation events of Co(I). Investigations, based on Quick-X-Ray Absorption Fine Structure (Q-XAFS) spectroscopy, Electron Paramagnetic Resonance (EPR), IR allied with DFT calculations, allow comprehensive mechanistic insights that establish the structural information of the catalytic active cobalt species along with the whole catalytic Co(I)/Co(III) cycle. Moreover, the acetonitrile and bipyridine system can be further extended to the acylation, allylation, and benzylation of aryl zinc reagents, which present a broad substrate scope with a catalytic amount of Co salt. Overall, this work provides a basic mechanistic perspective for designing cobalt-catalyzed cross-coupling reactions.

18.
Small ; 19(46): e2302726, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37480195

RESUMO

The rational design of novel high-performance cathode materials for sodium-ion batteries is a challenge for the development of the renewable energy sector. Here, a new sodium-deficient NASICON phosphate, namely Na3.40 □0.60 Co0.5 Fe0.5 V(PO4 )3 , demonstrating the excellent electrochemical performance is reported. The presence of Co allows a third Na+ to participate in the reaction thus exhibiting a high reversible capacity of ≈155 mAh g-1 in the voltage range of 2.0-4.0 V versus Na+ /Na with a reversible single-phase mechanism and a small volume shrinkage of ≈5.97% at 4.0 V. 23 Na solid-state nuclear magnetic resonance (NMR) combined with ex situ X-ray diffraction (XRD) refinements provide evidence for a preferential Na+ insertion within the Na2 site. Furthermore, the enhanced sodium kinetics ascribed to Co-substitution is also confirmed in combination with electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT), and theoretical calculation.

19.
Adv Mater ; 35(35): e2302966, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436805

RESUMO

Spin-polarization is known as a promising way to promote the anodic oxygen evolution reaction (OER), since the intermediates and products endow spin-dependent behaviors, yet it is rarely reported for ferromagnetic catalysts toward acidic OER practically used in industry. Herein, the first spin-polarization-mediated strategy is reported to create a net ferromagnetic moment in antiferromagnetic RuO2 via dilute manganese (Mn2+ ) (S = 5/2) doping for enhancing OER activity in acidic electrolyte. Element-selective X-ray magnetic circular dichroism reveals the ferromagnetic coupling between Mn and Ru ions, fulfilling the Goodenough-Kanamori rule. The ferromagnetism behavior at room temperature can be well interpreted by first principles calculations as the interaction between the Mn2+ impurity and Ru ions. Indeed, Mn-RuO2 nanoflakes exhibit a strongly magnetic field enhanced OER activity, with the lowest overpotential of 143 mV at 10 mA cmgeo -2 and negligible activity decay in 480 h stability (vs 200 mV/195 h without magnetic field) as known for magnetic effects in the literature. The intrinsic turnover frequency is also improved to reach 5.5 s-1 at 1.45 VRHE . This work highlights an important avenue of spin-engineering strategy for designing efficient acidic oxygen evolution catalysts.

20.
Adv Mater ; 35(44): e2305074, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452655

RESUMO

Producing indispensable hydrogen and oxygen for social development via water electrolysis shows more prospects than other technologies. Although electrocatalysts have been explored for centuries, a universal activity descriptor for both hydrogen-evolution reaction (HER) and oxygen-evolution reaction (OER) is not yet developed. Moreover, a unifying concept is not yet established to simultaneously understand HER/OER mechanisms. Here, the relationships between HER/OER activities in three common electrolytes and over ten representative material properties on 12 3d-metal-based model oxides are rationally bridged through statistical methodologies. The orbital charge-transfer energy (Δ) can serve as an ideal universal descriptor, where a neither too large nor too small Δ (≈1 eV) with optimal electron-cloud density around Fermi level affords the best activities, fulfilling Sabatier's principle. Systematic experiments and computations unravel that pristine oxide with Δ ≈ 1 eV possesses metal-like high-valence configurations and active lattice-oxygen sites to help adsorb key protons in HER and induce lattice-oxygen participation in the OER, respectively. After reactions, partially generated metals in the HER and high-valence hydroxides in the OER dominate proton adsorption and couple with pristine lattice-oxygen activation, respectively. These can be successfully rationalized by the unifying orbital charge-transfer theory. This work provides the foundation of rational material design and mechanism understanding for many potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...