Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35878293

RESUMO

Veterinary antiparasitic pharmaceuticals as well as pesticides have been detected in surface waters, and they may cause several toxic effects in this environmental compartment. In the present study, we evaluated the toxicity after exposure of different concentration of ivermectin (IVM; 50, 100, and 200 µg L-1) and cypermethrin (CYP; 5, 10, and 25 µg L-1) and the combination of these two compounds at non-toxic concentration (IVM 100 + CYP 5 µg L-1) in zebrafish embryos. Combination of IVM at 100 µg L-1 with CYP at 5 µg L-1 exposure induced hatching delay and malformations at 96 hpf in zebrafish larvae as well as significant induction of cell death in zebrafish larvae. At the same time, the two single concentrations of IVM and CYP did not show a toxic effect on zebrafish development. In conclusion, our study suggests that IVM and CYP show a synergistic effect at common, ineffective concentrations, promoting malformation and cell death in fish development.

2.
Animals (Basel) ; 12(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883395

RESUMO

Atopic dermatitis (AD) is an inflammatory and allergic disease, whose multifactorial etiopathogenesis is the consequence of the link between the genetic, immunological and environmental components. The complexity and difficulty in understanding the causes that trigger or exacerbate this pathology makes it difficult, once diagnosed, to proceed with a targeted and effective therapeutic process. Today, the new frontiers of research look to natural and innovative treatments to counteract the different manifestations of dermatitis. From this point of view, the mucus secreted by Helix aspersa Muller has proven, since ancient times, to be able to neutralize skin diseases. To study canine atopic dermatitis (cAD), we used cell lines of canine epidermal keratinocytes (CPEK) that are optimal to understand the biological reactivity of keratinocytes in vitro. The data obtained from our study demonstrate the anti-inflammatory capacity of snail secretion filtrate (SSF) in counteracting the production of proinflammatory cytokines produced during cAD, highlighting the opportunities for further studies to be able to identify new, natural and safe treatments for cAD and to open new frontiers for veterinarians and owners.

3.
Toxics ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35622618

RESUMO

Imidacloprid (IMI) is part of the neonicotinoids family, insecticides widely used by humans and also found in wastewater. This class of compounds, if present in the environment, can cause toxicity to different species such as bees and gammarids, although little is known about vertebrates such as fish. In addition, several substances have been reported in the environment that can cause damage to aquatic species, such as potassium perchlorate (KClO4), if exposed to high concentrations or for long periods. Often, the co-presence of different contaminants can cause a synergistic action in terms of toxicity to fish. In the present study, we first analyzed different concentrations of IMI (75, 100 and 150 mg/L) and KClO4 (1, 1.5 and 5 mM) to highlight the morphological effects at 96 hpf and, subsequently, chose two nontoxic concentrations to evaluate their co-exposure and the pathway involved in their co-toxicity. Morphological alteration, mucus production, messenger RNA (mRNA) expression related to intestinal function and oxidative stress were measured. These results suggest that co-exposure to IMI and KClO4 could affect zebrafish embryo development by increasing gut toxicity and the alteration of antioxidative defense mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...