Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 20(6): 4264-4269, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32357299

RESUMO

Despite tremendous interest in gene therapies, the systemic delivery of nucleic acids still faces substantial challenges. To successfully administer nucleic acids, one approach is to encapsulate them in lipid nanoparticles (LNPs). However, LNPs administered intravenously substantially accumulate in the liver where they are taken up by the reticuloendothelial system (RES). Here, we administer prior to the LNPs a liposome designed to transiently occupy liver cells, the Nanoprimer. This study demonstrates that the pretreatment of mice with the Nanoprimer decreases the LNPs' uptake by the RES. By accumulating rapidly in the liver cells, the Nanoprimer improves the bioavailability of the LNPs encapsulating human erythropoietin (hEPO) mRNA or factor VII (FVII) siRNA, leading respectively to more hEPO production (by 32%) or FVII silencing (by 49%). The use of the Nanoprimer offers a new strategy to improve the systemic delivery of RNA-based therapeutics.


Assuntos
Lipídeos , Nanopartículas , RNA Mensageiro , RNA Interferente Pequeno , Animais , Sistemas de Liberação de Medicamentos , Hepatócitos , Camundongos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
2.
Biomed Microdevices ; 21(2): 45, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963297

RESUMO

Developing strategies to deliver the required dose of therapeutics into target tissues and cell populations within the body is a principal aim of controlled release and drug delivery. Specifically, there is an interest in developing formulations that can achieve drug concentrations within the therapeutic window, for extended periods of time, with tunable release profiles, and with minimal complication and distress for the patient. To date, drug delivery systems have been developed to serve as depots, triggers, and carriers for therapeutics including small molecules, biologics, and cell-based therapies. Notably, the efficacy of these systems is intricately tied to the manner in which they are administered. For example, systemic and oral routes of administration are common, but both can result in rapid clearance from the organism. Towards this end, what formulation and administration route strategies are available to prolong the bioavailability of therapeutics? Here, we discuss historical and modern drug delivery systems, with the intention of exploring how properties including formulation, administration route and chemical structure influence the ability to achieve extended-release drug release profiles within the body.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Animais , Preparações de Ação Retardada , Portadores de Fármacos/metabolismo , Composição de Medicamentos , Humanos , Oxirredução , Polímeros/metabolismo , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...