Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Biomedicines ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38672164

RESUMO

BACKGROUND: Lung cancer (LC), including both non-small (NSCLC) and small (SCLC) subtypes, is currently treated with a combination of chemo- and immunotherapy. However, predictive biomarkers to identify high-risk patients are needed. Here, we explore the role of peripheral blood mononuclear cells (PBMCs) as a tool for novel biomarkers searching. METHODS: We analyzed the expression of the cGAS-STING pathway, a key DNA sensor that activates during chemotherapy, in PBMCs from LC patients divided into best responders (BR), responders (R) and non-responders (NR). The PBMCs were whole exome sequenced (WES). RESULTS: PBMCs from BR and R patients of LC cohorts showed the highest levels of STING (p < 0.0001) and CXCL10 (p < 0.0001). From WES, each subject had at least 1 germline/somatic alteration in a DDR gene and the presence of more DDR gene mutations correlated with clinical responses, suggesting novel biomarker implications. Thus, we tested the effect of the pharmacological DDR inhibitor (DDRi) in PBMCs and in three-dimensional spheroid co-culture of PBMCs and LC cell lines; we found that DDRi strongly increased cGAS-STING expression and tumor infiltration ability of immune cells in NR and R patients. Furthermore, we performed FACS analysis of PBMCs derived from LC patients from the BR, R and NR cohorts and we found that cytotoxic T cell subpopulations displayed the highest STING expression. CONCLUSIONS: cGAS-STING signaling activation in PBMCs may be a novel potential predictive biomarker for the response to immunotherapy and high levels are correlated with a better response to treatment along with an overall increased antitumor immune injury.

2.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474338

RESUMO

BACKGROUND: Cutaneous melanoma arises from skin melanocytes and has a high risk of metastatic spread. Despite better prevention, earlier detection, and the development of innovative therapies, melanoma incidence and mortality increase annually. Major clinical risk factors for melanoma include fair skin, an increased number of nevi, the presence of dysplastic nevi, and a family history of melanoma. However, several external inducers seem to be associated with melanoma susceptibility such as environmental exposure, primarily unprotected sun experience, alcohol consumption, and heavy metals. In recent years, epidemiological studies have highlighted a potential risk of ß-hexachlorocyclohexane (ß-HCH), the most studied organochlorine pesticide, causing cancer induction including melanoma. METHODS: We evaluated in vitro the impact of this pollutant on epidermal and dermal cells, attempting to describe mechanisms that could render cutaneous cells more prone to oncogenic transformation. RESULTS: We demonstrated that ß-HCH impacts melanocyte biology with a highly cell-type specific signature that involves perturbation of AKT/mTOR and Wnt/ß-catenin signaling, and AMPK activation, resulting in lowering energy reserve, cell proliferation, and pigment production. CONCLUSIONS: In conclusion, long-term exposure to persistent organic pollutants damages melanocyte metabolism in its function of melanin production with a consequent reduction of melanogenesis indicating a potential augmented skin cancer risk.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Melanócitos/metabolismo , Hexaclorocicloexano/metabolismo
3.
Sci Rep ; 14(1): 500, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177190

RESUMO

Osimertinib is a third-generation tyrosine kinase inhibitor clinically approved for first-line treatment of EGFR-mutant non-small cell lung cancer (NSCLC) patients. Although an impressive drug response is initially observed, in most of tumors, resistance occurs after different time and an alternative therapeutic strategy to induce regression disease is currently lacking. The hyperactivation of MEK/MAPKs, is one the most common event identified in osimertinib-resistant (OR) NSCLC cells. However, in response to selective drug pressure, the occurrence of multiple mechanisms of resistance may contribute to treatment failure. In particular, the epithelial-to-mesenchymal transition (EMT) and the impaired DNA damage repair (DDR) pathways are recognized as additional cause of resistance in NSCLC thus promoting tumor progression. Here we showed that concurrent upregulation of ITGB1 and DDR family proteins may be associated with an increase of EMT pathways and linked to both osimertinib and MEK inhibitor resistance to cell death. Furthermore, this study demonstrated the existence of an interplay between ITGB1 and DDR and highlighted, for the first time, that combined treatment of MEK inhibitor with DDRi may be relevant to downregulate ITGB1 levels and increase cell death in OR NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Linhagem Celular Tumoral
4.
Front Physiol ; 14: 1284410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046945

RESUMO

Aging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.

5.
Nucl Med Commun ; 44(5): 345-350, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36826418

RESUMO

BACKGROUND: Sentinel lymph node (SLN) biopsy in cutaneous melanoma patients evaluates the regional draining basin for occult micrometastatic disease. Occasionally, nonidentification of SLN impairs the acquisition of this important prognostic factor. OBJECTIVES: To investigate the outcomes of melanoma patients with negative lymphoscintigraphic findings and patients who underwent SLN biopsy from 2004 to 2015 ( n = 1200) were retrospectively reviewed for tumor characteristics and clinical outcomes. METHODS: Patients with nonvisualized lymph nodes (NV group) who underwent only preoperative lymphoscintigraphy were separated and compared with a cohort drawn from all melanoma patients who completed the surgical procedure within the same period (V group). RESULTS: A negative lymphoscintigraphic scan was observed in 38 cases (3.2% of all patients). The NV group showed a significantly older age (median 66.0 vs. 48.3 years; P < 0.0001). Head and neck melanomas were more frequent in the NV group compared to the control group (25.1 vs. 7.8%; P = 0.009). Tumor characteristics such as ulceration and Breslow thickness do not influence the lymphoscintigraphy result. No differences were found in overall survival (OS) and disease-free survival (DFS) between the groups. CONCLUSIONS: The nonvisualization of regional lymph nodes by lymphoscintigraphy is more frequent in older patients with head and neck melanomas. From the clinical point of view, no specific recommendation emerged for patients' management because the nonvisualization of the SLN did not show a significant influence on DFS and OS rates. However, lack of knowledge of lymph node status suggests performing a tighter follow-up eventually by ultrasound evaluation of all potential lymph node drainage basins.


Assuntos
Melanoma , Linfonodo Sentinela , Neoplasias Cutâneas , Humanos , Idoso , Melanoma/diagnóstico por imagem , Melanoma/cirurgia , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Linfonodo Sentinela/patologia , Estudos Retrospectivos , Linfocintigrafia , Metástase Linfática/patologia , Biópsia de Linfonodo Sentinela , Linfonodos/patologia , Melanoma Maligno Cutâneo
6.
Curr Opin Pharmacol ; 69: 102348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36842387

RESUMO

Gastro-esophageal tumors constitute a big health problem. Treatment options still mainly rely on chemotherapy, and apart from human epidermal growth factor receptor 2 positive and microsatellite instable/Epstein-Barr Virus disease, there are no molecularly guided options. Therefore, despite the large number of identified molecular alterations, precision medicine is still far from the clinic. In this context, the recently developed technology of patient-derived organoids (PDOs) could offer the chance to accelerate drug development and biomarker discovery. Indeed, PDOs are 3D primary cultures that were shown to reproduce patient's tumor characteristics. Moreover, several reports indicated that PDOs can replicate patient's response to a given drug; therefore, they are one of the most promising tools for functional precision medicine.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Esofágicas , Humanos , Medicina de Precisão , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4 , Neoplasias Esofágicas/patologia , Organoides/metabolismo
7.
J Exp Clin Cancer Res ; 42(1): 8, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604765

RESUMO

BACKGROUND: Patient-derived organoids (PDOs) from advanced colorectal cancer (CRC) patients could be a key platform to predict drug response and discover new biomarkers. We aimed to integrate PDO drug response with multi-omics characterization beyond genomics. METHODS: We generated 29 PDO lines from 22 advanced CRC patients and provided a morphologic, genomic, and transcriptomic characterization. We performed drug sensitivity assays with a panel of both standard and non-standard agents in five long-term cultures, and integrated drug response with a baseline proteomic and transcriptomic characterization by SWATH-MS and RNA-seq analysis, respectively. RESULTS: PDOs were successfully generated from heavily pre-treated patients, including a paired model of advanced MSI high CRC deriving from pre- and post-chemotherapy liver metastasis. Our PDOs faithfully reproduced genomic and phenotypic features of original tissue. Drug panel testing identified differential response among PDOs, particularly to oxaliplatin and palbociclib. Proteotranscriptomic analyses revealed that oxaliplatin non-responder PDOs present enrichment of the t-RNA aminoacylation process and showed a shift towards oxidative phosphorylation pathway dependence, while an exceptional response to palbociclib was detected in a PDO with activation of MYC and enrichment of chaperonin T-complex protein Ring Complex (TRiC), involved in proteome integrity. Proteotranscriptomic data fusion confirmed these results within a highly integrated network of functional processes involved in differential response to drugs. CONCLUSIONS: Our strategy of integrating PDOs drug sensitivity with SWATH-mass spectrometry and RNA-seq allowed us to identify different baseline proteins and gene expression profiles with the potential to predict treatment response/resistance and to help in the development of effective and personalized cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Proteômica , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Organoides
8.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497199

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease with immune cells' islet infiltration (called "insulitis"), which leads to beta cell loss. Despite being the critical element of T1D occurrence and pathogenesis, insulitis is often present in a limited percentage of islets, also at diagnosis. Therefore, it is needed to define reproducible methods to detect insulitis and beta-cell decline, to allow accurate and early diagnosis and to monitor therapy. However, this goal is still far due to the morphological aspect of islet microvasculature, which is rather dense and rich, and is considerably rearranged during insulitis. More studies on microvasculature are required to understand if contrast-enhanced ultrasound sonography measurements of pancreatic blood-flow dynamics may provide a clinically deployable predictive marker to predict disease progression and therapeutic reversal in pre-symptomatic T1D patients. Therefore, it is needed to clarify the relation between insulitis and the dynamics of ß cell loss and with coexisting mechanisms of dysfunction, according to clinical stage, as well as the micro vessels' dynamics and microvasculature reorganization. Moreover, the ideal cell-based therapy of T1D should start from an early diagnosis allowing a sufficient isolation of specific Procr+ progenitors, followed by the generation and expansion of islet organoids, which could be transplanted coupled to an immune-regulatory therapy which will permit the maintenance of pancreatic islets and an effective and long-lasting insulitis reversal.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Pancreatopatias , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/patologia , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco/metabolismo
9.
J Pers Med ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422115

RESUMO

Precision medicine approaches for solid tumors are mainly based on genomics. Its employment in clinical trials has led to somewhat underwhelming results, except for single responses. Moreover, several factors can influence the response, such as gene and protein expression, the coexistence of different genomic alterations or post-transcriptional/translational modifications, the impact of tumor microenvironment, etc., therefore making it insufficient to employ a genomics-only approach to predict response. Recently, the implementation of patient-derived organoids has shed light on the possibility to use them to predict patient response to drug treatment. This could offer for the first time the possibility to move precision medicine to a functional environment.

10.
Cells ; 11(22)2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429011

RESUMO

Vitiligo is a complex disease wherein derangements in multiple pathways determine the loss of functional melanocytes. Since its pathogenesis is not yet completely understood, vitiligo lacks a definitive safe and efficacious treatment. At present, different therapies are available; however, each modality has its baggage of disadvantages and side effects. Recently we have described several metabolic abnormalities in cells from pigmented skin of vitiligo patients, including alterations of glucose metabolism. Therefore, we conducted a study to evaluate the effect of Pioglitazone (PGZ), a Peroxisome proliferator-activated receptor-γ (PPARγ) agonist, on cells from pigmented vitiligo skin. We treated vitiligo melanocytes and fibroblasts with low doses of PGZ and evaluated the effects on mitochondrial alterations, previously reported by our and other groups. Treatment with PGZ significantly increased mRNA and protein levels of several anaerobic glycolytic enzymes, without increasing glucose consumption. The PGZ administration fully restored the metabolic network, replacing mitochondrial membrane potential and mitochondrial DNA (mtDNA) copy number. These effects, together with a significant increase in ATP content and a decrease in reactive oxygen species (ROS) production, provide strong evidence of an overall improvement of mitochondria bioenergetics in vitiligo cells. Moreover, the expression of HMGB1, Hsp70, defined as a part of DAMPs, and PD-L1 were significantly reduced. In addition, PGZ likely reverts premature senescence phenotype. In summary, the results outline a novel mode of action of Pioglitazone, which may turn out to be relevant to the development of effective new vitiligo therapeutic strategies.


Assuntos
PPAR gama , Vitiligo , Humanos , PPAR gama/metabolismo , Vitiligo/tratamento farmacológico , Vitiligo/genética , Vitiligo/metabolismo , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , Hipoglicemiantes , Melanócitos/metabolismo
11.
Biomedicines ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36359263

RESUMO

Vitiligo is a complex disorder with an important effect on the self-esteem and social life of patients. It is the commonest acquired depigmentation disorder characterized by the development of white macules resulting from the selective loss of epidermal melanocytes. The pathophysiology is complex and involves genetic predisposition, environmental factors, oxidative stress, intrinsic metabolic dysfunctions, and abnormal inflammatory/immune responses. Although several therapeutic options have been proposed to stabilize the disease by stopping the depigmentation process and inducing durable repigmentation, no specific cure has yet been defined, and the long-term persistence of repigmentation is unpredictable. Recently, due to the progressive loss of functional melanocytes associated with failure to spontaneously recover pigmentation, several different cell-based and cell-free regenerative approaches have been suggested to treat vitiligo. This review gives an overview of clinical and preclinical evidence for innovative regenerative approaches for vitiligo patients.

12.
Antioxidants (Basel) ; 11(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35740018

RESUMO

Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.

13.
J Exp Clin Cancer Res ; 41(1): 20, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016717

RESUMO

BACKGROUND: The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). METHODS: Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. RESULTS: Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. CONCLUSIONS: We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.


Assuntos
MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Animais , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Transfecção
14.
Br J Cancer ; 125(9): 1261-1269, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34493820

RESUMO

INTRODUCTION: Molecular-matched therapies have revolutionized cancer treatment. We evaluated the improvement in clinical outcomes of applying an in-house customized Next Generation Sequencing panel in a single institution. METHODS: Patients with advanced solid tumors were molecularly selected to receive a molecular-matched treatment into early phase clinical trials versus best investigators choice, according to the evaluation of a multidisciplinary molecular tumor board. The primary endpoint was progression-free survival (PFS) assessed by the ratio of patients presenting 1.3-fold longer PFS on matched therapy (PFS2) than with prior therapy (PFS1). RESULTS: Of a total of 231 molecularly screened patients, 87 were eligible for analysis. Patients who received matched therapy had a higher median PFS2 (6.47 months; 95% CI, 2.24-14.43) compared to those who received standard therapy (2.76 months; 95% CI, 2.14-3.91, Log-rank p = 0.022). The proportion of patients with a PFS2/PFS1 ratio over 1.3 was significantly higher in the experimental arm (0.33 vs 0.08; p = 0.008). DISCUSSION: We demonstrate the pivotal role of the institutional molecular tumor board in evaluating the results of a customized NGS panel. This process optimizes the selection of available therapies, improving disease control. Prospective randomized trials are needed to confirm this approach and open the door to expanded drug access.


Assuntos
Terapia de Alvo Molecular/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Ensaios Clínicos como Assunto , Intervalo Livre de Doença , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Medicina de Precisão , Estudos Prospectivos , Padrão de Cuidado
15.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298873

RESUMO

Solid tumors are complex systems characterized by dynamic interactions between neoplastic cells, non-tumoral cells, and extracellular components. Among all the stromal cells that populate tumor microenvironment, fibroblasts are the most abundant elements and are critically involved in disease progression. Cancer-associated fibroblasts (CAFs) have pleiotropic functions in tumor growth and extracellular matrix remodeling implicated in local invasion and distant metastasis. CAFs additionally participate in the inflammatory response of the tumor site by releasing a variety of chemokines and cytokines. It is becoming clear that understanding the dynamic, mutual melanoma-fibroblast relationship would enable treatment options to be amplified. To better characterize melanoma-associated fibroblasts, here we analyzed low-passage primary CAFs derived from advanced-stage primary skin melanomas, focusing on the immuno-phenotype. Furthermore, we assessed the expression of several CAF markers and the production of growth factors. To deepen the study of CAF-melanoma cell crosstalk, we employed CAF-derived supernatants and trans-well co-culture systems to evaluate the influences of CAFs on (i) the motogenic ability of melanoma cells, (ii) the chemotherapy-induced cytotoxicity, and (iii) the release of mediators active in modulating tumor growth and spread.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Cocultura , Citocinas/genética , Matriz Extracelular/genética , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Células Estromais/metabolismo , Melanoma Maligno Cutâneo
16.
Pigment Cell Melanoma Res ; 34(4): 800-813, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048137

RESUMO

Human skin aging is a natural phenomenon that results from continuous exposure to intrinsic (time, genetic factors, hormones) as well as extrinsic factors (UV exposure, pollution, tobacco). In areas that are frequently exposed to the sun, photoaging blends with the process of intrinsic aging, resulting in an increased senescent cells number and consequently accelerating the aging process. The severity of photodamage depends on constitutional factors, including skin phototype (skin color, tanning capacity), intensity, and duration of sunlight/UV exposure. Aging affects nearly every aspect of cutaneous biology, including pigmentation. Clinically, the phenotype of age pigmented skin has a mottled, uneven color, primarily due to age spots, with or without hypopigmentation. Uneven pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution of pigment, and turnover. In addition to direct damage to pigment-producing cells, photodamage alters the physiological crosstalk between keratinocytes, fibroblasts, endothelial cells, and melanocytes responsible for natural pigmentation homeostasis. Interestingly, age-independent diffuse expression of senescence-associated markers in the dermal and epidermal compartment is also associated with vitiligo, suggesting that premature senescence plays an important role in the pathology.


Assuntos
Envelhecimento da Pele/fisiologia , Pigmentação da Pele/fisiologia , Animais , Derme/patologia , Meio Ambiente , Humanos , Hiperpigmentação/patologia , Estresse Fisiológico
17.
Cancers (Basel) ; 12(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287114

RESUMO

Most clinical practice guidelines recommend a selective approach for rectal cancer after clinical staging. In low-risk patients, upfront surgery may be an appropriate option. However, in patients with MRI-defined high-risk features such as extramural vascular invasion, multiple nodal involvement or T4 and/or tumors close to or invading the mesorectal fascia, a more intensive preoperative approach is recommended, which may include neoadjuvant or preoperative chemotherapy. The potential benefits include better compliance than postoperative chemotherapy, a higher pathological complete remission rate, which facilitates a non-surgical approach, and earlier treatment of micrometastatic disease with improved disease-free survival compared to standard preoperative chemoradiation or short-course radiation. Two recently reported phase III randomized trials, RAPIDO and PRODIGE 23, show that adding neoadjuvant chemotherapy to either standard short-course radiation or standard long-course chemoradiation in locally advanced rectal cancer patients reduces the risk of metastasis and significantly prolongs disease-related treatment failure and disease-free survival. This review discusses these potentially practice-changing trials and how they may affect our current understanding of treating locally advanced rectal cancers.

18.
ESMO Open ; 5(5): e000847, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32967918

RESUMO

BACKGROUND: Colon cancer (CC) is a heterogeneous disease. Novel prognostic factors beyond pathological staging are required to accurately identify patients at higher risk of relapse. Integrating these new biological factors, such as plasma circulating tumour DNA (ctDNA), CDX2 staining, inflammation-associated cytokines and transcriptomic consensus molecular subtypes (CMS) classification, into a multimodal approach may improve our accuracy in determining risk of recurrence. METHODS: One hundred and fifty patients consecutively diagnosed with localised CC were prospectively enrolled in our study. ctDNA was tracked to detect minimal residual disease by droplet digital PCR. CDX2 expression was analysed by immunostaining. Plasma levels of cytokines potentially involved in disease progression were measured using ELISAs. A 96 custom gene panel for nCounter assay was used to classify CC into colorectal cancer assigner and CMS. RESULTS: Most patients were classified into CMS4 (37%) and CMS2 (28%), followed by CMS1 (20%) and CMS3 (15%) groups. CDX2-negative tumours were enriched in CMS1 and CMS4 subtypes. In univariable analysis, prognosis was influenced by primary tumour location, stage, vascular and perineural invasion together with high interleukin-6 plasma levels at baseline, tumours belonging to CMS 1 vs CMS2 +CMS3, ctDNA presence in plasma and CDX2 loss. However, only positive ctDNA in plasma samples (HR 13.64; p=0.002) and lack of CDX2 expression (HR 23.12; p=0.001) were found to be independent prognostic factors for disease-free survival in the multivariable model. CONCLUSIONS: ctDNA detection after surgery and lack of CDX2 expression identified patients at very high risk of recurrence in localised CC.


Assuntos
DNA Tumoral Circulante , Neoplasias do Colo , Biomarcadores Tumorais/genética , Fator de Transcrição CDX2/genética , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/genética , Humanos , Recidiva Local de Neoplasia/genética , Prognóstico
19.
J Clin Med ; 9(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971757

RESUMO

Gastroesophageal adenocarcinoma (GEA) represents a heterogeneous disease and, when diagnosed as locally advanced or metastatic, it is characterized by poor prognosis. During the last few years, several molecular classifications have been proposed to try to personalize treatment for those patients diagnosed with advanced disease. Nevertheless, despite the great effort, precision medicine is still far from being a reality. The improvement in the molecular analysis due to the application of high throughput technologies based on DNA and RNA sequencing has opened a novel scenario leading to the personalization of treatment. The possibility to target epidermal growth factor receptor (HER)2, Claudine, Fibroblast Growth Factor Receptors (FGFR), and other alterations with a molecular matched therapy could significantly improve clinical outcomes over advanced gastric cancer patients. On the other hand, the development of immunotherapy could also represent a promising strategy in a selected population. In this review, we sought to describe the novel pathways implicated in GEA progression and the results of the molecular matched therapies.

20.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979112

RESUMO

Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous "pre-activated state" due to PTCH1 mutations to those of skin tumor stroma.


Assuntos
Síndrome do Nevo Basocelular/patologia , Carcinoma Basocelular/patologia , Fibroblastos/patologia , Neoplasias Cutâneas/patologia , Animais , Síndrome do Nevo Basocelular/metabolismo , Carcinoma Basocelular/metabolismo , Fibroblastos/metabolismo , Humanos , Receptor Patched-1/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...