Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 172: 216-230, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30818231

RESUMO

Given the opportunities provided by internal dosimetry modelling in the interpretation of human biomonitoring (HBM) data, the assessment of the links between exposure to chemicals and observed HBM data can be effectively supported by PBTK modelling. This paper gives a comprehensive review of available human PBTK models for compounds selected as a priority by the European Human Biomonitoring Initiative (HBM4EU). We highlight their advantages and deficiencies and suggest steps for advanced internal dose modelling. The review of the available PBTK models highlighted the conceptual differences between older models compared to the ones developed recently, reflecting commensurate differences in research questions. Due to the lack of coordinated strategies for deriving useful biomonitoring data for toxicokinetic properties, significant problems in model parameterisation still remain; these are further increased by the lack of human toxicokinetic data due to ethics issues. Finally, questions arise as well as to the extent they are really representative of interindividual variability. QSARs for toxicokinetic properties is a complementary approach for PBTK model parameterisation, especially for data poor chemicals. This approach could be expanded to model chemico-biological interactions such as intestinal absorption and renal clearance; this could serve the development of more complex generic PBTK models that could be applied to newly derived chemicals. Another gap identified is the framework for mixture interaction terms among compounds that could eventually interact in metabolism. From the review it was concluded that efforts should be shifted toward the development of generic multi-compartmental and multi-route models, supported by targeted biomonitoring coupled with parameterisation by both QSAR approach and experimental (in-vivo and in-vitro) data for newly developed and data poor compounds.


Assuntos
Monitoramento Biológico , Modelos Biológicos , Toxicocinética , Humanos , Relação Quantitativa Estrutura-Atividade
2.
Food Chem Toxicol ; 106(Pt A): 114-124, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28522333

RESUMO

A Quantitative Structure Activity Relationship (QSAR) model was developed in order to predict physicochemical and biochemical properties of industrial chemicals of various groups. This model was based on the solvation equation, originally proposed by Abraham. In this work Abraham's solvation model got parameterized using artificial intelligence techniques such as artificial neural networks (ANNs) for the prediction of partitioning into kidney, heart, adipose, liver, muscle, brain and lung for the estimation of the bodyweight-normalized maximal metabolic velocity (Vmax) and the Michaelis - Menten constant (Km). Model parameterization using ANNs was compared to the use of non-linear regression (NLR) for organic chemicals. The coupling of ANNs with Abraham's solvation equation resulted in a model with strong predictive power (R2 up to 0.95) for both partitioning and biokinetic parameters. The proposed model outperformed other QSAR models found in the literature, especially with regard to the estimation and prediction of key biokinetic parameters such as Km. The results show that the physicochemical descriptors used in the model successfully describe the complex interactions of the micro-processes governing chemical distribution and metabolism in human tissues. Moreover, ANNs provide a flexible mathematical framework to capture the non-linear biochemical and biological interactions compared to less flexible regression techniques.


Assuntos
Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Cinética , Modelos Biológicos , Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...