Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(4): 6597-6608, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439359

RESUMO

High temporal resolution is essential for ultra-fast pump-probe experiments. Arrival time jitter and drift measurements, as well as their control, become critical especially when combining XUV or X-ray free-electron lasers (FELs) with optical lasers due to the large scale of such facilities and their distinct pulse generation processes. This paper presents the application of a laser pulse arrival time monitor that actively corrects the arrival time of an optical laser relative to the FEL's main optical clock. Combined with post-analysis single pulse jitter correction this new approach improves the temporal resolution for pump-probe experiments significantly. Benchmark measurements on photo-ionization of xenon atoms performed at FLASH beamline FL26, demonstrate a sub-50 fs FWHM overall temporal resolution.

2.
Sci Adv ; 9(47): eadk1482, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992169

RESUMO

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses. Here, we combine a broadband XUV probe pulse from high-order harmonic generation with an FEL pump pulse to observe dissociation pathways leading to fragments in different quantum states. We temporally resolve the dissociation of a specific O2+ state into two competing channels by measuring the resonances of ionic and neutral fragments. This scheme can be applied to investigate convoluted dynamics in larger molecules relevant to diverse science fields.

3.
J Phys Chem Lett ; 14(31): 7126-7133, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37534743

RESUMO

Recent developments in X-ray free-electron lasers have enabled a novel site-selective probe of coupled nuclear and electronic dynamics in photoexcited molecules, time-resolved X-ray photoelectron spectroscopy (TRXPS). We present results from a joint experimental and theoretical TRXPS study of the well-characterized ultraviolet photodissociation of CS2, a prototypical system for understanding non-adiabatic dynamics. These results demonstrate that the sulfur 2p binding energy is sensitive to changes in the nuclear structure following photoexcitation, which ultimately leads to dissociation into CS and S photoproducts. We are able to assign the main X-ray spectroscopic features to the CS and S products via comparison to a first-principles determination of the TRXPS based on ab initio multiple-spawning simulations. Our results demonstrate the use of TRXPS as a local probe of complex ultrafast photodissociation dynamics involving multimodal vibrational coupling, nonradiative transitions between electronic states, and multiple final product channels.

4.
Nano Lett ; 23(13): 5943-5950, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350548

RESUMO

Dynamics of optically excited plasmonic nanoparticles are presently understood as a series of scattering events involving the initiation of nanoparticle breathing oscillations. According to established models, these are caused by statistical heat transfer from thermalized electrons to the lattice. An additional contribution by hot-electron pressure accounts for phase mismatches between theory and experimental observations. However, direct experimental studies resolving the breathing-oscillation excitation are still missing. We used optical transient-absorption spectroscopy and time-resolved single-particle X-ray diffractive imaging to access the electron system and lattice. The time-resolved single-particle imaging data provided structural information directly on the onset of the breathing oscillation and confirmed the need for an additional excitation mechanism for thermal expansion. We developed a new model that reproduces all of our experimental observations. We identified optically induced electron density gradients as the initial driving source.

5.
Sci Rep ; 10(1): 6867, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32322051

RESUMO

Ultrafast measurements in the extreme ultraviolet (XUV) spectral region targeting femtosecond timescales rely until today on two complementary XUV laser sources: free electron lasers (FELs) and high-harmonic generation (HHG) based sources. The combination of these two source types was until recently not realized. The complementary properties of both sources including broad bandwidth, high pulse energy, narrowband tunability and femtosecond timing, open new opportunities for two-color pump-probe studies. Here we show first results from the commissioning of a high-harmonic beamline that is fully synchronized with the free-electron laser FLASH, installed at beamline FL26 with permanent end-station including a reaction microscope (REMI). An optical parametric amplifier synchronized with the FEL burst mode drives the HHG process. First commissioning tests including electron momentum measurements using REMI, demonstrate long-term stability of the HHG source over more than 14 hours. This realization of the combination of these light sources will open new opportunities for time-resolved studies targeting different science cases including core-level ionization dynamics or the electron dynamics during the transformation of a molecule within a chemical reaction probed on femtosecond timescales in the ultraviolet to soft X-ray spectral region.

6.
Chemphyschem ; 17(15): 2415-23, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27128655

RESUMO

We report on the dynamics of electronically excited o-, m-, and p-xylene on the femtosecond timescale by employing the vacuum-ultraviolet pump-IR probe mass spectrometry technique. The molecules were excited by the fifth harmonic (λ=160 nm) of a Ti:sapphire laser at a superposition of the S3 valence with several Rydberg states. The relaxation pathways were investigated by studying the parent P(+) and the fragment [P-H](+) and [P-CH3 ](+) time-resolved signals generated after interaction with the fundamental beam (λ=800 nm). Relaxation from the excited valence states was found to depend on the relative positions of the methyl groups on the ring. An increasing trend in the order o

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...