Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083327

RESUMO

A preliminary analysis was conducted on data acquired from RNA sequencing and SomaScan platforms, for the classification of patients with Inflammation of Unknown Origin. To this end, a multimodal data integration approach was designed, by combining the two platforms, in order to assess the potentiality of learning estimators, using the differentially expressed features from the independent profiling experiments of both platforms. The classification framing was the differentiation of Inflammation of Unknown Origin patients against a multitude of Systemic Autoinflammatory disease patients. Separate false discovery rate analyses were performed on each dataset to extract statistically significant features between the two designated sample groups. Genomic analysis managed higher overall classification metrics compared to proteomic analysis, averaging an ~19% increase overall metrics and classifiers, with a ~0.07% increase in standard error. The multimodal data integration approach achieved similar results to the individual platforms' analyses. More specifically, it managed the same classification accuracy, sensitivity, and specificity scores as the best individual analysis, with the simple Logistic Regression estimator.Clinical Relevance- This study highlights the advantage of exploiting RNA sequencing data to identify potential Inflammation of Unknown Origin disease specific biomarkers, even against other Systemic Autoinflammatory diseases. These findings are further emphasized given the non-apparent clinical discrepancy between Inflammation of Unknown Origin and other Systemic Autoinflammatory diseases.


Assuntos
Doenças Hereditárias Autoinflamatórias , Proteômica , Humanos , Proteômica/métodos , RNA-Seq , Genômica/métodos , Análise de Sequência de RNA/métodos , Síndrome
2.
Artigo em Inglês | MEDLINE | ID: mdl-36086666

RESUMO

A meta-analysis study was conducted to compare high-throughput technologies in the classification of Adult-Onset Still's Disease patients, using differentially expressed genes from independent profiling experiments. We exploited two publicly available datasets from the Gene Expression Omnibus and performed a separate differential expression analysis on each dataset to extract statistically important genes. We then mapped the genes of the two datasets and subsequently we employed well-established machine learning algorithms to evaluate the denoted genes as candidate biomarkers. Using next-generation sequencing data, we managed to achieve the maximum (100%) classification accuracy, sensitivity and specificity with the Gradient Boosting and the Random Forest classifiers, compared to the 83% of the DNA microarray data. Clinical Relevance- When biomarkers derived from one study are applied to the data of another, in many cases the results may diverge significantly. Here we establish that in cross-profiling meta-analysis approaches based on differential expression analysis, next-generation sequencing data provide more accurate results than microarray experiments in the classification of Adult-Onset Still's Disease patients.


Assuntos
Perfilação da Expressão Gênica , Doença de Still de Início Tardio , Biomarcadores , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doença de Still de Início Tardio/diagnóstico , Doença de Still de Início Tardio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...