Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
2.
Brain ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189320

RESUMO

Compensatory mechanisms in Parkinson's disease are defined as the changes that the brain uses to adapt to neurodegeneration and progressive dopamine reduction. Motor compensation in early Parkinson's disease could, in part, be responsible for a unilateral onset of clinical motor signs despite the presence of bilateral nigrostriatal degeneration. Although several mechanisms have been proposed for compensatory adaptations in Parkinson's disease, the underlying pathophysiology is unclear. Here, we investigate motor compensation in Parkinson's disease by investigating the relationship between clinical signs, dopamine transporter imaging data and neurophysiological measures of the primary motor cortex (M1), using transcranial magnetic stimulation in presymptomatic and symptomatic hemispheres of patients. In this cross-sectional, multicentre study, we screened 82 individuals with Parkinson's disease. Patients were evaluated clinically in their medication OFF state using standardized scales. Sixteen Parkinson's disease patients with bilateral dopamine transporter deficit in the putamina but unilateral symptoms were included. Twenty-eight sex- and age-matched healthy controls were also investigated. In all participants, we tested cortical excitability using single- and paired-pulse techniques, interhemispheric inhibition and cortical plasticity with paired associative stimulation. Data were analysed with ANOVAs, multiple linear regression and logistic regression models. Individual coefficients of motor compensation were defined in patients based on clinical and imaging data, i.e. the motor compensation coefficient. The motor compensation coefficient includes an asymmetry score to balance motor and dopamine transporter data between the two hemispheres, in addition to a hemispheric ratio accounting for the relative mismatch between the magnitude of motor signs and dopaminergic deficit. In patients, corticospinal excitability and plasticity were higher in the presymptomatic compared with the symptomatic M1. Also, interhemispheric inhibition from the presymptomatic to the symptomatic M1 was reduced. Lower putamen binding was associated with higher plasticity and reduced interhemispheric inhibition in the presymptomatic hemisphere. The motor compensation coefficient distinguished the presymptomatic from the symptomatic hemisphere. Finally, in the presymptomatic hemisphere, a higher motor compensation coefficient was associated with lower corticospinal excitability and interhemispheric inhibition and with higher plasticity. In conclusion, the present study suggests that motor compensation involves M1-striatal networks and intercortical connections becoming more effective with progressive loss of dopaminergic terminals in the putamen. The balance between these motor networks seems to be driven by cortical plasticity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39034894

RESUMO

Background: Migraine is the fourth most common cause of disability in women and the eighth most common cause in men. Central sensitization phenomena predispose to chronic migraine and are generally more pronounced in women. Objective: The aim of this retrospective observational study was to look for sex differences in a population of migraine subjects attending a tertiary headache center, focusing on symptoms of central sensitization such as allodynia and pericranial tenderness. Methods: This study is based on data collected at a tertiary headache center between January 1, 2018, and December 31, 2022. The clinical interview included the main features of migraine, allodynia, a disability questionnaire, the pericranial tenderness score, and anxiety and depression scales. Results: We selected a total of 1,087 migraine subjects (233 men). Osmophobia predominated in women, as did nausea. Disability scores, headache intensity, allodynia, anxiety, and depression predominated in women, without menopausal age playing a role. The frequency of symptomatic medication use was similar in both sexes. Allodynia score was the largest discriminating factor between women and men. Conclusions: Women with migraine are more likely than men to report acute allodynia, nausea, and osmophobia and are also more likely to be anxious, depressed, and disabled. These features appear to be independent of fertile age and are probably related to sex-specific genetic characteristics. These symptoms represent a tendency toward sensory hypersensitivity and central sensitization that should be carefully assessed in both women and men with migraine with a view to possibly predicting chronic development.

4.
Expert Rev Neurother ; 24(8): 799-814, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016323

RESUMO

INTRODUCTION: Essential tremor (ET) and Parkinson's disease (PD) are the most common causes of tremor and the most prevalent movement disorders, with overlapping clinical features that can lead to diagnostic challenges, especially in the early stages. AREAS COVERED: In the present paper, the authors review the clinical and experimental studies and emphasized the major aspects to differentiate between ET and PD, with particular attention to cardinal phenomenological features of these two conditions. Ancillary and experimental techniques, including neurophysiology, neuroimaging, fluid biomarker evaluation, and innovative methods, are also discussed for their role in differential diagnosis between ET and PD. Special attention is given to investigations and tools applicable in the early stages of the diseases, when the differential diagnosis between the two conditions is more challenging. Furthermore, the authors discuss knowledge gaps and unsolved issues in the field. EXPERT OPINION: Distinguishing ET and PD is crucial for prognostic purposes and appropriate treatment. Additionally, accurate diagnosis is critical for optimizing clinical and experimental research on pathophysiology and innovative therapies. In a few years, integrated technologies could enable accurate, reliable diagnosis from early disease stages or prodromal stages in at-risk populations, but further research combining different techniques is needed.


Assuntos
Tremor Essencial , Doença de Parkinson , Tremor Essencial/diagnóstico , Tremor Essencial/fisiopatologia , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/complicações , Diagnóstico Diferencial , Neuroimagem/métodos , Biomarcadores
5.
Brain Sci ; 14(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39061435

RESUMO

Over the past three decades, substantial advancements have occurred in non-invasive brain stimulation (NIBS). These developments encompass various non-invasive techniques aimed at modulating brain function. Among the most widely utilized methods today are transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES), which include direct- or alternating-current transcranial stimulation (tDCS/tACS). In addition to these established techniques, newer modalities have emerged, broadening the scope of non-invasive neuromodulation approaches available for research and clinical applications in movement disorders, particularly for Parkinson's disease (PD) and, to a lesser extent, atypical Parkinsonism (AP). All NIBS techniques offer the opportunity to explore a wide range of neurophysiological mechanisms and exert influence over distinct brain regions implicated in the pathophysiology of Parkinsonism. This paper's first aim is to provide a brief overview of the historical background and underlying physiological principles of primary NIBS techniques, focusing on their translational relevance. It aims to shed light on the potential identification of biomarkers for diagnostic and therapeutic purposes, by summarising available experimental data on individuals with Parkinsonism. To date, despite promising findings indicating the potential utility of NIBS techniques in Parkinsonism, their integration into clinical routine for diagnostic or therapeutic protocols remains a subject of ongoing investigation and scientific debate. In this context, this paper addresses current unsolved issues and methodological challenges concerning the use of NIBS, focusing on the importance of future research endeavours for maximizing the efficacy and relevance of NIBS strategies for individuals with Parkinsonism.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38737299

RESUMO

Background: Tremor disorders have various genetic causes. Case report: A 60-year-old female with a family history of tremor presented a combined tremor syndrome, transient episodes of loss of contact and speech disturbances, as well as distal painful symptoms. Genetic screening revealed a novel heterozygous missense variant in the KCNQ2 gene. Discussion: The KCNQ2 protein regulates action potential firing, and mutations in its gene are associated with epilepsy and neuropathic pain. The identified variant, although of uncertain significance, may disrupt KCNQ2 function and also play a role in tremor pathogenesis. This case highlights the importance of genetic screening in combined tremor disorders.


Assuntos
Canal de Potássio KCNQ2 , Tremor , Feminino , Humanos , Pessoa de Meia-Idade , Canal de Potássio KCNQ2/genética , Mutação de Sentido Incorreto , Tremor/genética , Tremor/fisiopatologia
7.
J Neural Transm (Vienna) ; 131(8): 941-952, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38744708

RESUMO

BACKGROUND: Subtle parkinsonian signs, i.e., rest tremor and bradykinesia, are considered soft signs for defining essential tremor (ET) plus. OBJECTIVES: Our study aimed to further characterize subtle parkinsonian signs in a relatively large sample of ET patients from a clinical and neurophysiological perspective. METHODS: We employed clinical scales and kinematic techniques to assess a sample of 82 ET patients. Eighty healthy controls matched for gender and age were also included. The primary focus of our study was to conduct a comparative analysis of ET patients (without any soft signs) and ET-plus patients with rest tremor and/or bradykinesia. Additionally, we investigated the asymmetry and side concordance of these soft signs. RESULTS: In ET-plus patients with parkinsonian soft signs (56.10% of the sample), rest tremor was clinically observed in 41.30% of cases, bradykinesia in 30.43%, and rest tremor plus bradykinesia in 28.26%. Patients with rest tremor had more severe and widespread action tremor than other patients. Furthermore, we observed a positive correlation between the amplitude of action and rest tremor. Most ET-plus patients had an asymmetry of rest tremor and bradykinesia. There was no side concordance between these soft signs, as confirmed through both clinical examination and kinematic evaluation. CONCLUSIONS: Rest tremor and bradykinesia are frequently observed in ET and are often asymmetric but not concordant. Our findings provide a better insight into the phenomenology of ET and suggest that the parkinsonian soft signs (rest tremor and bradykinesia) in ET-plus may originate from distinct pathophysiological mechanisms.


Assuntos
Tremor Essencial , Hipocinesia , Humanos , Tremor Essencial/fisiopatologia , Tremor Essencial/diagnóstico , Feminino , Masculino , Fenômenos Biomecânicos , Idoso , Pessoa de Meia-Idade , Hipocinesia/fisiopatologia , Hipocinesia/etiologia , Hipocinesia/diagnóstico , Índice de Gravidade de Doença , Idoso de 80 Anos ou mais , Adulto
8.
Cerebellum ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761352

RESUMO

Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.

9.
Cerebellum ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748348

RESUMO

Essential tremor (ET) is a heterogeneous disorder characterized by bilateral upper limbs action tremor and, possibly, neurological signs of uncertain significance, including voluntary movement abnormalities and cognitive disturbances, i.e., the so-called 'soft' signs configuring the ET-plus definition. While motor and cognitive disturbances often coexist in ET, their interrelationship remains largely unexplored. Here we aim to further investigate the relationship between motor symptoms, objectively assessed through kinematic analysis, and cognitive dysfunctions in ET. Seventy ET patients underwent clinical examination, as well as kinematic recordings of tremor and finger tapping and a thorough cognitive assessment. We then tested clinic-demographic and kinematic differences between patients with and without cognitive abnormalities, i.e., with mild cognitive impairment (MCI). Correlation analysis served to explore potential associations between kinematic and cognitive data. Forty-three ET patients (61.42%) had MCI. ET-MCI patients exhibited reduced movement velocity during finger tapping compared to those with normal cognition (p < 0.001). Lower movement velocity during finger tapping was associated with poorer cognitive performance. Namely, we observed a correlation between movement velocity and performance on the Babcock Story Immediate and Delayed Recall Test (r = 0.52 and r = 0.45, both p < 0.001), as well as the interference memory task at 10 and 30 s (r = 0.3, p = 0.008 and r = 0.2, p = 0.03). In this study, we have provided data for a better pathophysiological interpretation of motor and cognitive signs in ET, including the role played by the cerebellum or extra-cerebellar areas, which possibly underpin both signs.

10.
Mov Disord Clin Pract ; 11(6): 645-654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594807

RESUMO

BACKGROUND: Tremor disorders remain as clinical diagnoses and the rate of misdiagnosis between the commonest non-parkinsonian tremors is relatively high. OBJECTIVES: To compare the clinical features of Essential Tremor without other features (pure ET), ET plus soft dystonic signs (ET + DS), and tremor combined with dystonia (TwD). METHODS: We compared the clinical features of patients with pure ET, ET + DS, and TwD enrolled in The ITAlian tremor Network (TITAN). Linear regression models were performed to determine factors associated with health status and quality of life. RESULTS: Three-hundred-eighty-three patients were included. Sex distribution was significantly different between the groups with males being more represented in pure ET and females in TwD. The initial site of tremor was different between the groups with about 40% of TwD having head tremor and ET + DS unilateral upper limb tremor at onset. This pattern mirrored the distribution of overt dystonia and soft dystonic signs at examination. Sensory trick, task-specificity, and position-dependence were more common, but not exclusive, to TwD. Pure ET patients showed the lowest degree of alcohol responsiveness and ET + DS the highest. Midline tremor was more commonly encountered and more severe in TwD than in the other groups. Regression analyses demonstrated that tremor severity, sex, age, and to a lesser degree the variable "group", independently predicted health status and quality of life, suggesting the existence of other determinants beyond tremor. CONCLUSIONS: Pure ET and TwD manifest with a phenotypic overlap, which calls for the identification of diagnostic biomarkers. ET + DS shared features with both syndromes, suggesting intra-group heterogeneity.


Assuntos
Distonia , Tremor Essencial , Qualidade de Vida , Humanos , Masculino , Feminino , Tremor Essencial/fisiopatologia , Tremor Essencial/diagnóstico , Tremor Essencial/complicações , Distonia/diagnóstico , Pessoa de Meia-Idade , Idoso , Tremor/diagnóstico , Tremor/fisiopatologia , Adulto , Idoso de 80 Anos ou mais , Índice de Gravidade de Doença
11.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610540

RESUMO

In the field of neuroscience, brain-computer interfaces (BCIs) are used to connect the human brain with external devices, providing insights into the neural mechanisms underlying cognitive processes, including aesthetic perception. Non-invasive BCIs, such as EEG and fNIRS, are critical for studying central nervous system activity and understanding how individuals with cognitive deficits process and respond to aesthetic stimuli. This study assessed twenty participants who were divided into control and impaired aging (AI) groups based on MMSE scores. EEG and fNIRS were used to measure their neurophysiological responses to aesthetic stimuli that varied in pleasantness and dynamism. Significant differences were identified between the groups in P300 amplitude and late positive potential (LPP), with controls showing greater reactivity. AI subjects showed an increase in oxyhemoglobin in response to pleasurable stimuli, suggesting hemodynamic compensation. This study highlights the effectiveness of multimodal BCIs in identifying the neural basis of aesthetic appreciation and impaired aging. Despite its limitations, such as sample size and the subjective nature of aesthetic appreciation, this research lays the groundwork for cognitive rehabilitation tailored to aesthetic perception, improving the comprehension of cognitive disorders through integrated BCI methodologies.


Assuntos
Interfaces Cérebro-Computador , Humanos , Envelhecimento , Encéfalo , Estética , Percepção
12.
Clin Neurophysiol ; 161: 59-68, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447495

RESUMO

Blinking is a motor act characterized by the sequential closing and opening of the eyelids, which is achieved through the reciprocal activation of the orbicularis oculi and levator palpebrae superioris muscles. This stereotyped movement can be triggered reflexively, occur spontaneously, or voluntarily initiated. During each type of blinking, the neural control of the antagonistic interaction between the orbicularis oculi and levator palpebrae superioris muscles is governed by partially overlapping circuits distributed across cortical, subcortical, and brainstem structures. This paper provides a comprehensive overview of the anatomical and physiological foundations underlying the neural control of blinking. We describe the infra-nuclear apparatus, as well as the supra-nuclear control mechanisms, i.e., how cortical, subcortical, and brainstem structures regulate and coordinate the different types of blinking.


Assuntos
Piscadela , Humanos , Piscadela/fisiologia , Animais , Tronco Encefálico/fisiologia , Pálpebras/fisiologia
13.
Brain Commun ; 6(1): fcae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370448

RESUMO

In patients with Parkinson's disease, the connectivity between the two primary motor cortices may be altered. However, the correlation between asymmetries of abnormal interhemispheric connections and bradykinesia features has not been investigated. Furthermore, the potential effects of dopaminergic medications on this issue remain largely unclear. The aim of the present study is to investigate the interhemispheric connections in Parkinson's disease by transcranial magnetic stimulation and explore the potential relationship between interhemispheric inhibition and bradykinesia feature asymmetry in patients. Additionally, we examined the impact of dopaminergic therapy on neurophysiological and motor characteristics. Short- and long-latency interhemispheric inhibition was measured in 18 Parkinson's disease patients and 18 healthy controls, bilaterally. We also assessed the corticospinal and intracortical excitability of both primary motor cortices. We conducted an objective analysis of finger-tapping from both hands. Correlation analyses were performed to explore potential relationships among clinical, transcranial magnetic stimulation and kinematic data in patients. We found that short- and long-latency interhemispheric inhibition was reduced (less inhibition) from both hemispheres in patients than controls. Compared to controls, finger-tapping movements in patients were slower, more irregular, of smaller amplitudes and characterized by a progressive amplitude reduction during movement repetition (sequence effect). Among Parkinson's disease patients, the degree of short-latency interhemispheric inhibition imbalance towards the less affected primary motor cortex correlated with the global clinical motor scores, as well as with the sequence effect on the most affected hand. The greater the interhemispheric inhibition imbalance towards the less affected hemisphere (i.e. less inhibition from the less to the most affected primary motor cortex than that measured from the most to the less affected primary motor cortex), the more severe the bradykinesia in patients. In conclusion, the inhibitory connections between the two primary motor cortices in Parkinson's disease are reduced. The interhemispheric disinhibition of the primary motor cortex may have a role in the pathophysiology of specific bradykinesia features in patients, i.e. the sequence effect.

14.
Clin Neurophysiol ; 158: 159-169, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219405

RESUMO

OBJECTIVE: To evaluate the effects of cerebellar transcranial alternating current stimulation (tACS) delivered at cerebellar-resonant frequencies, i.e., theta (θ) and gamma (γ), on upper limb motor performance and cerebellum-primary motor cortex (M1) connectivity, as assessed by cerebellar-brain inhibition (CBI), in healthy subjects. METHODS: Participants underwent cerebellar-tACS while performing three cerebellar-dependent motor tasks: (i) rhythmic finger-tapping, (ii) arm reaching-to-grasp ('grasping') and (iii) arm reaching-to-point ('pointing') an object. Also, we evaluated possible changes in CBI during cerebellar-tACS. RESULTS: θ-tACS decreased movement regularity during the tapping task and increased the duration of the pointing task compared to sham- and γ-tACS. Additionally, θ-tACS increased the CBI effectiveness (greater inhibition). The effect of θ-tACS on movement rhythm correlated with CBI changes and less tapping regularity corresponded to greater CBI. CONCLUSIONS: Cerebellar-tACS delivered at the θ frequency modulates cerebellar-related motor behavior and this effect is, at least in part, mediated by changes in the cerebellar inhibitory output onto M1. The effects of θ-tACS may be due to the modulation of cerebellar neurons that resonate to the θ rhythm. SIGNIFICANCE: These findings contribute to a better understanding of the physiological mechanisms of motor control and provide new evidence on cerebellar non-invasive brain stimulation.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Motor/fisiologia , Cerebelo/fisiologia , Extremidade Superior , Ritmo Teta
15.
Neurol Sci ; 45(4): 1645-1654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37936018

RESUMO

BACKGROUND: While migraine is markedly prevalent in women, gender-related phenotype differences were rarely assessed. For this reason, we investigated, through a multicenter observational cross-sectional study, based on an online questionnaire, gender-related differences in stress factors, emotions, and pain perception in migraine patients and controls and their impact on migraine severity. METHODS: The study was designed as an online questionnaire. The link was emailed to healthy subjects (C) and migraine patients (MIG) (age 18-75, education ≥ 13 years) recruited during the first visit in 8 Italian Headache Centers adhering to Italian Society for Headache Study (SISC). The questionnaire included personal/social/work information, the Perceived Stress Scale, the Romance Quality Scale, the Emotion Regulation Questionnaire, the Beck Anxiety Inventory, the Body Perception Questionnaire, the pain perception, and a self-assessment of migraine severity in the last 3 months. RESULTS: 202 MIG and 202 C completed the survey. Independently from gender, migraine was characterized by higher pain sensitivity and more severe partner relationships. The female gender, in MIG, exhibited higher anxiety scores, body awareness, and reduced emotional suppression. Body awareness and emotional suppression were discriminating factors between genders in control and migraine groups without relevant influence on disease features. Perceived perception of migraine severity was similar between genders. CONCLUSION: Gender-related emotional and stress factors did not contribute to delineate a distinct phenotype in migraine men and women. The possible impact of emotional and stress factors characterizing genders could be considered for a single case-tailored therapeutic approach.


Assuntos
Transtornos de Enxaqueca , Testes Psicológicos , Autorrelato , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Estudos Transversais , Emoções , Cefaleia , Transtornos de Enxaqueca/psicologia , Percepção da Dor , Inquéritos e Questionários
16.
J Neural Transm (Vienna) ; 131(1): 31-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37804428

RESUMO

Parkinson's disease (PD) and Alzheimer's disease (AD) are neurodegenerative disorders with some overlapping clinical features. Hypomimia (reduced facial expressivity) is a prominent sign of PD and it is also present in AD. However, no study has experimentally assessed hypomimia in AD and compared facial expressivity between PD and AD patients. We compared facial emotion expressivity in patients with PD, AD, and healthy controls (HCs). Twenty-four PD patients, 24 AD patients and 24 HCs were videotaped during neutral facial expressions and while posing six facial emotions (anger, surprise, disgust, fear, happiness, and sadness). Fifteen raters were asked to evaluate the videos using MDS-UPDRS-III (item 3.2) and to identify the corresponding emotion from a seven-forced-choice response format. We measured the percentage of accuracy, the reaction time (RT), and the confidence level (CL) in the perceived accuracy of the raters' responses. We found the highest MDS-UPDRS 3.2 scores in PD, and higher in AD than HCs. When evaluating the posed expression captures, raters identified a lower percentage of correct answers in the PD and AD groups than HCs. There was no difference in raters' response accuracy between the PD and AD. No difference was observed in RT and CL data between groups. Hypomimia in patients correlated positively with the global MDS-UPDRS-III and negatively with Mini Mental State Examination scores. PD and AD patients have a similar pattern of reduced facial emotion expressivity compared to controls. These findings hold potential pathophysiological and clinical implications.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Expressão Facial , Emoções/fisiologia , Face
17.
Brain ; 147(4): 1412-1422, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37956080

RESUMO

Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.


Assuntos
Mioclonia , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Cerebelo/fisiologia
18.
Neurol Sci ; 45(5): 2035-2046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38091213

RESUMO

BACKGROUND: Opicapone (OPC) is a third-generation, selective peripheral COMT inhibitor that improves peripheral L-DOPA bioavailability and reduces OFF time and end-of-dose motor fluctuations in Parkinson's disease (PD) patients. OBJECTIVES: In this study, we objectively assessed the effects of adding OPC to L-DOPA on bradykinesia in PD through kinematic analysis of finger movements. METHODS: We enrolled 20 treated patients with PD and motor fluctuations. Patients underwent two experimental sessions (L-DOPA, L-DOPA + OPC), separated by at least 1 week. In each session, patients were clinically evaluated and underwent kinematic movement analysis of repetitive finger movements at four time points: (i) before their usual morning dose of L-DOPA (T0), (ii) 30 min (T1), (iii) 1 h and 30 min (T2), and (iv) 3 h and 30 min after the L-DOPA intake (T3). RESULTS: Movement velocity and amplitude of finger movements were higher in PD patients during the session with OPC compared to the session without OPC at all the time points tested. Importantly, the variability of finger movement velocity and amplitude across T0-T3 was significantly lower in the L-DOPA + OPC than L-DOPA session. CONCLUSIONS: This study is the first objective assessment of the effects of adding OPC to L-DOPA on bradykinesia in patients with PD and motor fluctuations. OPC, in addition to the standard dopaminergic therapy, leads to significant improvements in bradykinesia during clinically relevant periods associated with peripheral L-DOPA dynamics, i.e., the OFF state in the morning, delayed-ON, and wearing-OFF periods.


Assuntos
Oxidiazóis , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Levodopa/efeitos adversos , Antiparkinsonianos/uso terapêutico , Hipocinesia/tratamento farmacológico , Hipocinesia/etiologia , Fenômenos Biomecânicos , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico
20.
Neuroimage Clin ; 40: 103526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37847966

RESUMO

INTRODUCTION: In this research, our primary objective was to explore the correlation between basal ganglia dopaminergic neurotransmission, assessed using 123I-FP-CIT (DAT-SPECT), and finger movements abnormalities in patients with essential tremor (ET) and Parkinson's disease (PD). METHODS: We enrolled 16 patients with ET, 17 with PD, and 18 healthy controls (HC). Each participant underwent comprehensive clinical evaluations, kinematic assessments of finger tapping. ET and PD patients underwent DAT-SPECT imaging. The DAT-SPECT scans were subjected to both visual and semi-quantitative analysis using DaTQUANT®. We then investigated the correlations between the clinical, kinematic, and DAT-SPECT data, in patients. RESULTS: Our findings confirm that individuals with ET exhibited slower finger tapping than HC. Visual evaluation of radiotracer uptake in both striata demonstrated normal levels within the ET patient cohort, while PD patients displayed reduced uptake. However, there was notable heterogeneity in the quantification of uptake within the striata among ET patients. Additionally, we found a correlation between the amount of radiotracer uptake in the striatum and movement velocity during finger tapping in patients. Specifically, lower radioligand uptake corresponded to decreased movement velocity (ET: coef. = 0.53, p-adj = 0.03; PD: coef. = 0.59, p-adj = 0.01). CONCLUSION: The study's findings suggest a potential link between subtle changes in central dopaminergic tone and altered voluntary movement execution, in ET. These results provide further insights into the pathophysiology of ET. However, longitudinal studies are essential to determine whether the slight reduction in dopaminergic tone observed in ET patients represents a distinct subtype of the disease or could serve as a predictor for the clinical progression into PD.


Assuntos
Tremor Essencial , Doença de Parkinson , Humanos , Tremor Essencial/diagnóstico por imagem , Hipocinesia/diagnóstico por imagem , Hipocinesia/etiologia , Doença de Parkinson/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Corpo Estriado , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA