Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 25(1): 125, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858168

RESUMO

PURPOSE: An elevated number of circulating neutrophils is a poor prognostic factor for breast cancer, where evidence of bone marrow cancer-dependent priming is found. However, how early this priming is detectable remains unclear. PATIENTS AND METHODS: Here, we investigate changes in circulating neutrophils from newly diagnosed breast cancer patients before any therapeutic interventions. To do this, we assessed their lifespan and their broader intracellular kinase network activation states by using the Pamgene Kinome assay which measures the activity of neutrophil kinases. RESULTS: We found sub-type specific L-selectin (CD62L) changes in circulating neutrophils as well as perturbations in their overall global kinase activity. Strikingly, breast cancer patients of different subtypes (HR+, HER2+, triple negative) exhibited distinct neutrophil kinase activity patterns indicating that quantifiable perturbations can be detected in circulating neutrophils from early breast cancer patients, that are sensitive to both hormonal and HER-2 status. We also detected an increase in neutrophils lifespan in cancer patients, independently of tumour subtype. CONCLUSIONS: Our results suggest that the tumour-specific kinase activation patterns in circulating neutrophils may be used in conjunction with other markers to identify patients with cancer from those harbouring only benign lesions of the breast. Given the important role neutrophil in breast cancer progression, the significance of this sub-type of specific priming warrants further investigation.


Assuntos
Neoplasias da Mama , Neutrófilos , Humanos , Feminino , Neutrófilos/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mama/patologia
2.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37552469

RESUMO

Microbial dysbiosis triggers inflammatory periodontitis. In this issue of JEM, Kim et al. (2023. J. Exp. Med.https://doi.org/10.1084/jem.20221751) demonstrate that neutrophil extracellular trap histones are the major mediators fueling the pathogenic Th17 inflammation that promotes gum and bone loss in periodontitis.


Assuntos
Armadilhas Extracelulares , Periodontite , Humanos , Histonas , Inflamação , Células Th17
3.
Cell Stem Cell ; 30(6): 781-799.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267914

RESUMO

Somatic mutations commonly occur in hematopoietic stem cells (HSCs). Some mutant clones outgrow through clonal hematopoiesis (CH) and produce mutated immune progenies shaping host immunity. Individuals with CH are asymptomatic but have an increased risk of developing leukemia, cardiovascular and pulmonary inflammatory diseases, and severe infections. Using genetic engineering of human HSCs (hHSCs) and transplantation in immunodeficient mice, we describe how a commonly mutated gene in CH, TET2, affects human neutrophil development and function. TET2 loss in hHSCs produce a distinct neutrophil heterogeneity in bone marrow and peripheral tissues by increasing the repopulating capacity of neutrophil progenitors and giving rise to low-granule neutrophils. Human neutrophils that inherited TET2 mutations mount exacerbated inflammatory responses and have more condensed chromatin, which correlates with compact neutrophil extracellular trap (NET) production. We expose here physiological abnormalities that may inform future strategies to detect TET2-CH and prevent NET-mediated pathologies associated with CH.


Assuntos
Dioxigenases , Neutrófilos , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas , Células-Tronco Hematopoéticas/fisiologia , Medula Óssea , Hematopoese/genética , Mutação , Proteínas de Ligação a DNA/genética , Dioxigenases/genética
4.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37192000

RESUMO

Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Retrovirus Endógenos , Neoplasias Pulmonares , Humanos , Calbindinas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Senescência Celular/genética , Retrovirus Endógenos/genética , Neoplasias Pulmonares/genética , Provírus/genética
5.
Immunity ; 55(12): 2436-2453.e5, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36462503

RESUMO

The factors that influence survival during severe infection are unclear. Extracellular chromatin drives pathology, but the mechanisms enabling its accumulation remain elusive. Here, we show that in murine sepsis models, splenocyte death interferes with chromatin clearance through the release of the DNase I inhibitor actin. Actin-mediated inhibition was compensated by upregulation of DNase I or the actin scavenger gelsolin. Splenocyte death and neutrophil extracellular trap (NET) clearance deficiencies were prevalent in individuals with severe COVID-19 pneumonia or microbial sepsis. Activity tracing by plasma proteomic profiling uncovered an association between low NET clearance and increased COVID-19 pathology and mortality. Low NET clearance activity with comparable proteome associations was prevalent in healthy donors with low-grade inflammation, implicating defective chromatin clearance in the development of cardiovascular disease and linking COVID-19 susceptibility to pre-existing conditions. Hence, the combination of aberrant chromatin release with defects in protective clearance mechanisms lead to poor survival outcomes.


Assuntos
COVID-19 , Sepse , Animais , Camundongos , Actinas , Cromatina , Desoxirribonuclease I , DNA , Neutrófilos , Proteômica
6.
Nat Commun ; 13(1): 4658, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945238

RESUMO

The mechanisms linking systemic infection to hyperinflammation and immune dysfunction in sepsis are poorly understood. Extracellular histones promote sepsis pathology, but their source and mechanism of action remain unclear. Here, we show that by controlling fungi and bacteria captured by splenic macrophages, neutrophil-derived myeloperoxidase attenuates sepsis by suppressing histone release. In systemic candidiasis, microbial capture via the phagocytic receptor SIGNR1 neutralizes myeloperoxidase by facilitating marginal zone infiltration and T cell death-dependent histone release. Histones and hyphae induce cytokines in adjacent CD169 macrophages including G-CSF that selectively depletes mature Ly6Ghigh neutrophils by shortening their lifespan in favour of immature Ly6Glow neutrophils with a defective oxidative burst. In sepsis patient plasma, these mediators shorten mature neutrophil lifespan and correlate with neutrophil mortality markers. Consequently, high G-CSF levels and neutrophil lifespan shortening activity are associated with sepsis patient mortality. Hence, by exploiting phagocytic receptors, pathogens degrade innate and adaptive immunity through the detrimental impact of downstream effectors on neutrophil lifespan.


Assuntos
Neutrófilos , Sepse , Fator Estimulador de Colônias de Granulócitos/metabolismo , Histonas/metabolismo , Humanos , Longevidade , Macrófagos/metabolismo , Peroxidase/metabolismo , Linfócitos T/metabolismo
7.
Front Immunol ; 13: 915081, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874771

RESUMO

Inflammation plays a crucial role in the onset and development of atherosclerosis. Periodontitis is a common chronic disease linked to other chronic inflammatory diseases such as atherosclerotic cardiovascular disease (ASCVD). The mechanistic pathways underlying this association are yet to be fully understood. This critical review aims at discuss the role of neutrophils in mediating the relationship between periodontitis and ASCVD. Systemic inflammation triggered by periodontitis could lead to adaptations in hematopoietic stem and progenitor cells (HSPCs) resulting in trained granulopoiesis in the bone marrow, thereby increasing the production of neutrophils and driving the hyper-responsiveness of these abundant innate-immune cells. These alterations may contribute to the onset, progression, and complications of atherosclerosis. Despite the emerging evidence suggesting that the treatment of periodontitis improves surrogate markers of cardiovascular disease, the resolution of periodontitis may not necessarily reverse neutrophil hyper-responsiveness since the hyper-inflammatory re-programming of granulopoiesis can persist long after the inflammatory inducers are removed. Novel and targeted approaches to manipulate neutrophil numbers and functions are warranted within the context of the treatment of periodontitis and also to mitigate its potential impact on ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Periodontite , Aterosclerose/complicações , Doenças Cardiovasculares/complicações , Humanos , Inflamação/metabolismo , Neutrófilos
8.
Blood ; 139(21): 3104-3105, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35616987
9.
Cardiovasc Res ; 118(13): 2737-2753, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34648022

RESUMO

At the frontline of the host defence response, neutrophil antimicrobial functions have adapted to combat infections and injuries of different origins and magnitude. The release of web-like DNA structures named neutrophil extracellular traps (NETs) constitutes an important mechanism by which neutrophils prevent pathogen dissemination or deal with microorganisms of a bigger size. At the same time, nuclear and granule proteins with microbicidal activity bind to these DNA structures promoting the elimination of entrapped pathogens. However, these toxic properties may produce unwanted effects in the host, when neutrophils uncontrollably release NETs upon persistent inflammation. As a consequence, NET accumulation can produce vessel occlusion, tissue damage, and prolonged inflammation associated with the progression and exacerbation of multiple pathologic conditions. This review outlines recent advances in understanding the mechanisms of NET release and functions in sterile disease. We also discuss mechanisms of physiological regulation and the importance of neutrophil heterogeneity in NET formation and composition.


Assuntos
Armadilhas Extracelulares , Humanos , Neutrófilos/metabolismo , Inflamação/metabolismo , DNA/metabolismo
11.
Stem Cell Reports ; 16(3): 428-436, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33581053

RESUMO

We document here that intensive care COVID-19 patients suffer a profound decline in hemoglobin levels but show an increase of circulating nucleated red cells, suggesting that SARS-CoV-2 infection either directly or indirectly induces stress erythropoiesis. We show that ACE2 expression peaks during erythropoiesis and renders erythroid progenitors vulnerable to infection by SARS-CoV-2. Early erythroid progenitors, defined as CD34-CD117+CD71+CD235a-, show the highest levels of ACE2 and constitute the primary target cell to be infected during erythropoiesis. SARS-CoV-2 causes the expansion of colony formation by erythroid progenitors and can be detected in these cells after 2 weeks of the initial infection. Our findings constitute the first report of SARS-CoV-2 infectivity in erythroid progenitor cells and can contribute to understanding both the clinical symptoms of severe COVID-19 patients and how the virus can spread through the circulation to produce local inflammation in tissues, including the bone marrow.


Assuntos
COVID-19/virologia , Células Precursoras Eritroides/virologia , Eritropoese/fisiologia , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Células Precursoras Eritroides/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/virologia , Células Vero
12.
Nat Immunol ; 22(2): 140-153, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349708

RESUMO

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Assuntos
Apresentação de Antígeno , Apresentação Cruzada , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagossomos/metabolismo , Receptores Imunológicos/metabolismo , Receptores Mitogênicos/metabolismo , Linfócitos T/metabolismo , Animais , Morte Celular , Técnicas de Cocultura , Células Dendríticas/imunologia , Células HEK293 , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Lectinas Tipo C/genética , Ligantes , Camundongos , NADPH Oxidases/metabolismo , Fagossomos/genética , Fagossomos/imunologia , Fosforilação , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/genética , Receptores Mitogênicos/genética , Transdução de Sinais , Quinase Syk/metabolismo , Linfócitos T/imunologia
13.
Nat Commun ; 11(1): 5566, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149141

RESUMO

Tuberculosis (TB) is a leading cause of mortality due to infectious disease, but the factors determining disease progression are unclear. Transcriptional signatures associated with type I IFN signalling and neutrophilic inflammation were shown to correlate with disease severity in mouse models of TB. Here we show that similar transcriptional signatures correlate with increased bacterial loads and exacerbate pathology during Mycobacterium tuberculosis infection upon GM-CSF blockade. Loss of GM-CSF signalling or genetic susceptibility to TB (C3HeB/FeJ mice) result in type I IFN-induced neutrophil extracellular trap (NET) formation that promotes bacterial growth and promotes disease severity. Consistently, NETs are present in necrotic lung lesions of TB patients responding poorly to antibiotic therapy, supporting the role of NETs in a late stage of TB pathogenesis. Our findings reveal an important cytokine-based innate immune effector network with a central role in determining the outcome of M. tuberculosis infection.


Assuntos
Armadilhas Extracelulares/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interferon Tipo I/metabolismo , Pulmão/microbiologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Tuberculose Pulmonar/imunologia , Animais , Bases de Dados Genéticas , Progressão da Doença , Perfilação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Interferon Tipo I/genética , Interferon gama/genética , Interferon gama/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/patogenicidade , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/patologia , RNA-Seq , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia
14.
EMBO J ; 39(18): e104494, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32643832

RESUMO

Cells respond to endolysosome damage by either repairing the damage or targeting damaged endolysosomes for degradation via lysophagy. However, the signals regulating the decision for repair or lysophagy are poorly characterised. Here, we show that the Parkinson's disease (PD)-related kinase LRRK2 is activated in macrophages by pathogen- or sterile-induced endomembrane damage. LRRK2 recruits the Rab GTPase Rab8A to damaged endolysosomes as well as the ESCRT-III component CHMP4B, thereby favouring ESCRT-mediated repair. Conversely, in the absence of LRRK2 and Rab8A, damaged endolysosomes are targeted to lysophagy. These observations are recapitulated in macrophages from PD patients where pathogenic LRRK2 gain-of-function mutations result in the accumulation of endolysosomes which are positive for the membrane damage marker Galectin-3. Altogether, this work indicates that LRRK2 regulates endolysosomal homeostasis by controlling the balance between membrane repair and organelle replacement, uncovering an unexpected function for LRRK2, and providing a new link between membrane damage and PD.


Assuntos
Membranas Intracelulares/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Macrófagos/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/genética , Endossomos/metabolismo , Ativação Enzimática/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Células RAW 264.7 , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
Cell Rep ; 31(5): 107602, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375035

RESUMO

Neutrophil extracellular traps (NETs) promote atherosclerosis by inducing proinflammatory cytokines, but the underlying mechanism remains unknown. NET DNA is immunogenic, but given the cytotoxicity of NET histones, it is unclear how it activates cells without killing them. Here, we show that histones, DNA, citrullination, and fragmentation synergize to drive inflammation below the histone cytotoxicity threshold. At low concentrations, nucleosomes induce cytokines, but high concentrations kill cells before cytokines are produced. The synergy between histones and DNA is critical for sub-lethal signaling and relies on distinct roles for histones and DNA. Histones bind and activate TLR4, whereas DNA recruits TLR4 to histone-containing endosomes. Citrullination is dispensable for NETosis but potentiates histone-mediated signaling. Consistently, chromatin blockade or PAD4 deficiency reduces atherosclerosis. Inflammation is also reduced in infected mice expressing GFP-tagged histones that block TLR4 binding. Thus, chromatin promotes inflammation in sterile disease and infection via synergistic mechanisms that use signals with distinct functions.


Assuntos
Citrulinação/fisiologia , DNA/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Cromatina/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Ativação de Neutrófilo/fisiologia
16.
Cell Host Microbe ; 27(2): 277-289.e6, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32053791

RESUMO

Hookworms cause a major neglected tropical disease, occurring after larvae penetrate the host skin. Neutrophils are phagocytes that kill large pathogens by releasing neutrophil extracellular traps (NETs), but whether they target hookworms during skin infection is unknown. Using a murine hookworm, Nippostrongylus brasiliensis, we observed neutrophils being rapidly recruited and deploying NETs around skin-penetrating larvae. Neutrophils depletion or NET inhibition altered larvae behavior and enhanced the number of adult worms following murine infection. Nevertheless, larvae were able to mitigate the effect of NETs by secreting a deoxyribonuclease (Nb-DNase II) to degrade the DNA backbone. Critically, neutrophils were able to kill larvae in vitro, which was enhanced by neutralizing Nb-DNase II. Homologs of Nb-DNase II are present in other nematodes, including the human hookworm, Necator americanus, which also evaded NETs in vitro. These findings highlight the importance of neutrophils in hookworm infection and a potential conserved mechanism of immune evasion.


Assuntos
Ancylostomatoidea/imunologia , Endodesoxirribonucleases/biossíntese , Armadilhas Extracelulares/metabolismo , Evasão da Resposta Imune , Animais , Interações Hospedeiro-Parasita , Camundongos , Neutrófilos/metabolismo , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia
17.
Sci Immunol ; 4(36)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201258

RESUMO

Cytokines maintain intestinal health, but precise intercellular communication networks remain poorly understood. Macrophages are immune sentinels of the intestinal tissue and are critical for gut homeostasis. Here, we show that in a murine inflammatory bowel disease (IBD) model based on macrophage-restricted interleukin-10 (IL-10) receptor deficiency (Cx3cr1Cre:Il10rafl/fl mice), proinflammatory mutant gut macrophages cause severe spontaneous colitis resembling the condition observed in children carrying IL-10R mutations. We establish macrophage-derived IL-23 as the driving factor of this pathology. Specifically, we report that Cx3cr1Cre:Il10rafl/fl:Il23afl/fl mice harboring macrophages deficient for both IL-10R and IL-23 are protected from colitis. By analyzing the epithelial response to proinflammatory macrophages, we provide evidence that T cells of colitic animals produce IL-22, which induces epithelial chemokine expression and detrimental neutrophil recruitment. Collectively, we define macrophage-specific contributions to the induction and pathogenesis of colitis, as manifested in mice harboring IL-10R deficiencies and human IBDs.


Assuntos
Colite/imunologia , Células Epiteliais/imunologia , Interleucina-23/imunologia , Interleucinas/imunologia , Macrófagos/imunologia , Receptores de Interleucina-10/imunologia , Animais , Colite/patologia , Intestinos/imunologia , Intestinos/patologia , Masculino , Camundongos , Neutrófilos/imunologia , Receptores de Interleucina-10/genética , Interleucina 22
18.
Nat Commun ; 10(1): 2887, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253760

RESUMO

Understanding how immune challenges elicit different responses is critical for diagnosing and deciphering immune regulation. Using a modular strategy to interpret the complex transcriptional host response in mouse models of infection and inflammation, we show a breadth of immune responses in the lung. Lung immune signatures are dominated by either IFN-γ and IFN-inducible, IL-17-induced neutrophil- or allergy-associated gene expression. Type I IFN and IFN-γ-inducible, but not IL-17- or allergy-associated signatures, are preserved in the blood. While IL-17-associated genes identified in lung are detected in blood, the allergy signature is only detectable in blood CD4+ effector cells. Type I IFN-inducible genes are abrogated in the absence of IFN-γ signaling and decrease in the absence of IFNAR signaling, both independently contributing to the regulation of granulocyte responses and pathology during Toxoplasma gondii infection. Our framework provides an ideal tool for comparative analyses of transcriptional signatures contributing to protection or pathogenesis in disease.


Assuntos
Candidíase/metabolismo , Interferon Tipo I/metabolismo , Interferon gama/metabolismo , Melioidose/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Animais , Burkholderia pseudomallei , Candida albicans , Candidíase/imunologia , Candidíase/microbiologia , Regulação da Expressão Gênica/imunologia , Vírus da Influenza A Subtipo H3N2 , Interferon Tipo I/sangue , Interferon Tipo I/genética , Interferon gama/sangue , Interferon gama/genética , Pulmão , Melioidose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptor de Interferon alfa e beta , Receptores de Interferon , Infecções por Vírus Respiratório Sincicial/imunologia , Receptor de Interferon gama
19.
Cell Host Microbe ; 25(4): 477-479, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30974080

RESUMO

In this issue of Cell Host & Microbe, Thanabalasuriar et al. (2019) show how neutrophils and biofilm-forming bacteria respond reciprocally, resulting in the formation of a barricade comprised of neutrophil extracellular traps. Disrupting this exchange and the resulting barrier can be detrimental unless balanced in favor of the immune system.


Assuntos
Armadilhas Extracelulares , Biofilmes , Encéfalo , Neutrófilos/imunologia , Pseudomonas aeruginosa
20.
Immunity ; 49(6): 992-994, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566887

RESUMO

The neutrophil's journey through the vascular wall constitutes a critical step during inflammation. In this issue of Immunity, Girbl et al. (2018) demonstrate that neutrophil extravasation is mediated by sequential and compartmentalized chemokine action, endowing unexpected specificity to promiscuous chemokine receptors.


Assuntos
Neutrófilos , Migração Transendotelial e Transepitelial , Quimiocina CXCL1 , Quimiocina CXCL2 , Quimiotaxia , Humanos , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...