Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38251387

RESUMO

Infections caused by Staphylococcus aureus are particularly difficult to treat due to the high rate of antibiotic resistance. S. aureus also forms biofilms that reduce the effects of antibiotics and disinfectants. Therefore, new therapeutic approaches are increasingly required. In this scenario, plant waste products represent a source of bioactive molecules. In this study, we evaluated the antimicrobial and antibiofilm activity of the rice husk extract (RHE) on S. aureus clinical isolates. In a biofilm inhibition assay, high concentrations of RHE counteracted the formation of biofilm by S. aureus isolates, both methicillin-resistant (MRSA) and -sensitive (MSSA). The observation of the MRSA biofilm by confocal laser scanning microscopy using live/dead cell viability staining confirmed that the bacterial viability in the RHE-treated biofilm was reduced. However, the extract showed no or little biofilm disaggregation ability. An additive effect was observed when treating S. aureus with a combination of RHE and oxacillin/cefoxitin. In Galleria mellonella larvae treated with RHE, the extract showed no toxicity even at high concentrations. Our results support that the rice husk has antimicrobial and antibiofilm properties and could potentially be used in the future in topical solutions or on medical devices to prevent biofilm formation.

2.
Int J Environ Health Res ; 34(2): 1100-1112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37036296

RESUMO

Tetraclinis articulata essential oil proved to be effective in controlling tomato grey mould, so we would investigate its effect on some tomato defense mechanisms. The pretreatment of Botrytis cinerea infected tomato plants with TAEO emulsion enhanced the activity of antioxidant enzymes activity SOD, CAT, APX, and GPX, and total polyphenols content and it decreased IC50 of free radical-scavenging activity and H2O2 content. Results showed amelioration in antioxidant status in TAEO emulsion treated and B. cinerea infected plants indicating that treatment decreased infection in tomato plants. The qRT-PCR analysis of defense genes expression Chitinase SlChi, transcription factors SlWRKY and SlAP2/ERF, Lipoxygenase SlLOX, and Thioredoxin SlTRX showed that they were up-regulated as early as 12 hpi sustained with a second increase at 48 hpi in TAEO emulsion pretreated and infected plants. These results suggest the potential use of TAEO emulsion as natural product to induce tomato antioxidant status and activate defense genes.


Assuntos
Fungicidas Industriais , Óleos Voláteis , Solanum lycopersicum , Fungicidas Industriais/toxicidade , Óleos Voláteis/farmacologia , Peróxido de Hidrogênio , Emulsões , Antioxidantes/farmacologia , Fungos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética
3.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687219

RESUMO

Pectin, a natural biopolymer, can be extracted from food waste biomass, adding value to raw materials. Currently, commercial pectin is mostly extracted from citrus peels (85.5%) and apple pomace (14.0%), with a small segment from sugar beet pulp (0.5%). However, driven by high market demand (expected to reach 2.12 billion by 2030), alternative agro-industrial waste is gaining attention as potential pectin sources. This review summarizes the recent advances in characterizing pectin from both conventional and emerging food waste sources. The focus is the chemical properties that affect their applications, such as the degree of esterification, the neutral sugars' composition, the molecular weight, the galacturonic acid content, and technological-functional properties. The review also highlights recent updates in nutraceutical and food applications, considering the potential use of pectin as an encapsulating agent for intestinal targeting, a sustainable biopolymer for food packaging, and a functional and emulsifying agent in low-calorie products. It is clear from the considered literature that further studies are needed concerning the complexity of the pectin structure extracted from emerging food waste raw materials, in order to elucidate their most suitable commercial application.


Assuntos
Beta vulgaris , Eliminação de Resíduos , Pectinas , Verduras , Suplementos Nutricionais
4.
Foods ; 12(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36766058

RESUMO

Rice husk is a good source of polyphenols, but it has not been efficiently utilized in food applications yet. Therefore, the aim of this work is to investigate, by in vitro assays, the polyphenolic extract (RHE) capacity of this waste to counteract the protein glycation at different stages of the reaction, correlating this activity with the antiradical properties. A microwave-assisted extraction using hydro-alcoholic solvents was applied to recover husk polyphenols. Extraction parameters were optimized by the design of the experiment. The extract with the highest polyphenolic recovery was obtained at 500 W and 90 °C, using 1:35 g of dry material/mL solvent, 80% ethanol, and a 5 min extraction time. Results highlight the ability of RHE to inhibit the formation of fructosamine in the early stage of glycation with a dose-dependent activity. Furthermore, in the middle stage of the reaction, the highest RHE tested concentration (2.5 mg/mL) almost completely inhibit the monitored advanced glycation end products (AGEs), as well as showing a good trapping ability against α-dicarbonyl intermediates. A strong positive correlation with antioxidant activity is also found. The obtained results are supported by the presence of ten polyphenols detected by RP-HPLC-DAD-ESI-MSn, mainly hydroxycinnamic acids and flavonoids, already reported in the literature as antiglycative and antioxidant agents.

5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36649680

RESUMO

AIMS: This study aimed to determine the antibacterial and antileishmanial potential of Micromeria nervosa extracts. The identification of the antileishmanial compound and the study of its molecular mechanism of action have also been undertaken. METHODS AND RESULTS: Ethanol extract showed high polyphenol content and diethyl ether extract exhibited high DPPH scavenging and low beta-carotene bleaching activity (IC50 = 13.04 ± 0.99 and 200.18 ± 3.32 µg mL-1, respectively). However, diethyl ether extract displayed high antibacterial activity against Gram-positive strains including methicillin-resistant Staphylococcus aureus (MIC = 31.25 µg mL-1), Staph. aureus ATCC6538 (MIC = 62.5 µg mL-1), and Listeria monocytogenes ATCC 19115 (MIC = 125 µg mL-1), as well as high antileishmanial activity against the promastigote forms of L. infantum and L. major (IC50 = 11.45 and 14.53 µg mL-1, respectively). The active compound was purified using bioassay-guided fractionation and thin layer chromatography, and identified as ursolic acid using high-performance liquid chromatography coupled with a photodiode array and mass spectrometry. The purified compound was strongly inhibitory against the promastigote and amastigote forms of L. infantum and L. major (IC50 = 5.87 and 6.95 µg mL-1 versus 9.56 and 10. 68 µg mL-1, respectively) without overt cytotoxicity against Raw 264.7 macrophage cells (SI = 13.53 and 11.43, respectively). The commercial compound (ursolic acid) showed similar activity against amastigotes and promastigotes forms of L. infantum and L. major. Moreover, its molecular mode of action against leishmaniasis seems to involve the expression of the ODC and SPS genes involved in thiol pathway. CONCLUSION: Extracts of M. nervosa can be considered as a potential alternative to antimicrobial and antileishmanial drugs.


Assuntos
Anti-Infecciosos , Antiprotozoários , Lamiaceae , Staphylococcus aureus Resistente à Meticilina , Antioxidantes/farmacologia , Antioxidantes/análise , Éter , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antiprotozoários/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Staphylococcus aureus , Ácido Ursólico
6.
Food Funct ; 14(1): 541-549, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533636

RESUMO

Chlorogenic acids are hydroxycinnamic derivatives widespread in food or food by-products, known for their antioxidant effects and ability to interfere with the formation of advanced glycation end products (AGEs). AGEs are potential glycotoxins involved in age-related disorders, such as diabetes, cardiovascular diseases, and neurological disorders. The ability of chlorogenic acids to inhibit AGE formation under physiological conditions needs further investigation other than the in vitro assays. Therefore, in this study, the capacity of 5-caffeoylquinic acid (5-CQA) to effectively trap methylglyoxal (MGO), an AGE precursor compound also present in daily consumed food, was investigated by evaluating 5-CQA and MGO metabolic fate when subjected to digestion. Two different in vitro digestion approaches (static based on the Infogest protocol and dynamic based on a novel millifluidic gastrointestinal model) were set up and the samples collected at different steps of the static and dynamic processes were analyzed by a validated RP-HPLC-DAD method. The obtained results indicated that the gastrointestinal process strongly affected the 5-CQA capacity to trap MGO and its resulting antiglycation activity. Therefore, preliminary investigation using advanced in vitro tests, particularly dynamic approaches, should always be performed to predict the effect of the digestion process on the potential bioactives present in food, food by-products, or plant extracts.


Assuntos
Ácido Clorogênico , Aldeído Pirúvico , Aldeído Pirúvico/metabolismo , Ácido Clorogênico/farmacologia , Óxido de Magnésio , Produtos Finais de Glicação Avançada/metabolismo , Digestão
7.
Antioxidants (Basel) ; 13(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38247461

RESUMO

Currently, rice (Oryza sativa L.) production and consumption is increasing worldwide, and many efforts to decrease the substantial impact of its byproducts are needed. In recent years, the interest in utilizing rice kernels, husk, bran, and germ for the recovery of different molecules, from catalysts (to produce biodiesel) to bioactive compounds, has grown. In fact, rice byproducts are rich in secondary metabolites (phenolic compounds, flavonoids, and tocopherols) with different types of bioactivity, mainly antioxidant, antimicrobial, antidiabetic, and anti-inflammatory, which make them useful as functional ingredients. In this review, we focus our attention on the recovery of antioxidant compounds from rice byproducts by using innovative green techniques that can overcome the limitations of traditional extraction processes, such as their environmental and economic impact. In addition, traditional assays and more innovative methodologies to evaluate the antioxidant activity are discussed. Finally, the possible molecular mechanisms of action of the rice byproduct antioxidant compounds (phenolic acids, flavonoids, γ-oryzanol, and vitamin E) are discussed as well. In the future, it is expected that rice byproduct antioxidants will be important food ingredients that reduce the risk of the development of several human disorders involving oxidative stress, such as metabolic diseases, inflammatory disorders, and cancer.

8.
Crit Rev Food Sci Nutr ; : 1-19, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533404

RESUMO

In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.

9.
Biologia (Bratisl) ; 77(12): 3645-3655, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340288

RESUMO

Mushrooms produce various classes of secondary metabolites that could be used as antivirals in the future. The aim of this study was to determine the antiviral activity of methanolic extracts obtained from two edible mushrooms, Boletus bellinii (B. bellinii) and Boletus subtomentosus (B. subtomentosus), collected from the north forests of Tunisia, against Herpes Simplex Virus type 2 and Coxsackie Virus B type 3. In vitro micro-inhibition assays and cytotoxicity screening were performed on Vero cells. The tested Boletus methanolic extracts were found to be non-cytotoxic at high doses (50% cytotoxic concentration - CC50 > 1 mg/mL) and exhibited relevant viral inhibition with 50% inhibitory concentration, i.e., IC50 of 3.60 ± 0.66 µg/mL and 35.70 ± 7.42 µg/mL for B. bellinii, and 5.67 ± 1.02 µg/mL and 56.88 ± 9.56 µg/mL for B. subtomentosus, against HSV-2 and CVB-3, respectively. Interestingly, Boletus methanolic extracts showed high selectivity index (SI) values against both viruses, with the highest values against HSV-2 (SI > 800). Both viral strains were inhibited when treated with extracts during the early stages of virus replication. Inonotusin A was isolated and identified as the compound responsible for these activities. The latter is a novel antiviral agent that may have clinical utility or serve as a lead compound for further development. This study is the first attempt to investigate the antiviral activity of inonotusin A, isolated from the genus Boletus. The information from the present work should be a valuable reference for future studies on the antiviral activity of inonotusin A.

10.
3 Biotech ; 12(12): 336, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36340803

RESUMO

Due to the numerous side effects of conventional drugs against herpetic infections and the growing phenomenon of resistance, the researchers turned to natural compounds as a source of new drugs because they are less toxic than the synthetic molecules. This study aimed to analyse the activity of Pistacia vera L. male floral bud extracts, against the replication of herpes simplex virus type 2, as well as to investigate their mode of action, isolate, and identify the active compound. Cell viability and anti-herpes virus activity were performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the plaque reduction assay, respectively. Three extracts (ethanolic, aqueous and polysaccharide extracts) were tested, only aqueous and polysaccharide extracts had anti-herpetic activity with a selectivity index of 29.12 and 20.25, respectively. Investigation about the mechanism of action indicated that the two active extracts inhibited the virus replication by direct contact with virucidal selectivity indexes of 39.15 and 32.09, respectively. An active compound was isolated from the aqueous extract using TLC bio-guided assay: it was identified as gallic acid by high-performance liquid chromatography-diode array detection coupled with electrospray ionization mass spectrometry (HPLC-DAD-ESI-MSn). The antiviral activity of Pistacia vera L. has been previously shown. The selectivity index of gallic acid is much lower than that of the active extract from which it has been isolated. Therefore, we can consider the aqueous extract prepared from Pistacia vera L. male floral buds as a promising natural product for treating herpetic diseases.

11.
Foods ; 11(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741934

RESUMO

A polysaccharide fraction obtained from camelina cake (CCP), selected as a carrier to encapsulate purple corn cob extract (MCE), was investigated. A wide population of carbohydrate polymers (with a polydispersivity index of 3.26 ± 0.07 and an average molecular weight of about 139.749 × 103 ± 4.392 × 103 g/mol) with a gel-like behavior and a thixotropic feature characterized the fraction. MCE-CCP combinations (50-50 and 25-75, w/w), selected based on CCP encapsulation efficiency, were tested for their stability and MCE polyphenols' bioaccessibility during digestion (monitored using an in vitro static procedure). During the oral and gastric phases of the digestion process, CCP gradually swelled and totally released MCE polyphenols. MCE-CCP50 had the fastest release. Moreover, anthocyanins were still detectable during the duodenal phase, in both MCE-CCP ingredients. Furthermore, CCP (5 mg/mL) exerted in vitro potential hypocholesterolemic activity via bile salts binding during digestion.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35646135

RESUMO

The aim of this study was to investigate the phytochemical composition of dried Roselle calyx (Hibiscus sabdariffa L.) using both ethanolic and aqueous extracts. We report the antimicrobial activities against a wide range of bacteria, yeast, and fungi. The antioxidant activities were tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and 2-2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging assays. We report also for the first time the effect of the swarming motility in Pseudomonas aeruginosa PAO1. Our results showed that the tested two extracts were a rich source of phenols, flavonoids, and tannins with different degrees. Additionally, eleven phytoconstituents were identified by LC/MS technique (Hibiscus acid: 3-caffeoylquinic acid, 5-caffeoylquinic acid, 5-feruloylquinic acid, cyanidin 3-o-glucoside, myricetin, quercetin 7-o-rutinoside, quercetin 3-o-glucoside, delphinidin 3-o-sambubioside, and kaempferol 3-o-p-coumaroyl-glucoside). Also, it was shown that the calyx extract can scavenge 86% of the DPPH radical, while the rate of 53% and 23% of inhibition of the DPPH was obtained only at the concentration of 125 and 50 µg/mL, and a small inhibition was made at a concentration of 5 µg/mL. Roselle extracts inhibited the growth of the selected microorganisms at low concentrations, while higher concentrations are needed to completely kill them. However, no activity against CVB-3 was recorded for both extracts. In addition, the obtained extracts reduced the swarming motility of P. aeruginosa at 2.5 mg/ml. The docking simulation showed acceptable binding affinities (up to -9.6 kcal/mol) and interaction with key residues of 1JIJ, 2QZW, and 2UVO. The obtained results highlighted the potential use of Roselle extract as a source of phytoconstituents with promising antimicrobial, antioxidant, and anti-quorum sensing activities.

13.
Antioxidants (Basel) ; 11(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624780

RESUMO

The extraction process of alcohol-insoluble polysaccharides from exhausted Moradyn cob (Zea mays L. cv. Moradyn) (EMCP), camelina cake (Camelina sativa L. Crantz) (CCP), and common bean seeds (Phaseolus vulgaris L.) (CBP) was investigated and optimized by Response Surface Methodology. Each fraction was tested at different core/carrier ratios in the encapsulation of Moradyn cob extract (MCE), a rich source of antioxidant anthocyanins, and the obtained ingredients were screened for their encapsulation efficiency (EE%) and extraction process sustainability. The ingredients containing 50% and 75% CCP had EE% higher than 60% and 80%, respectively, and were selected for further studies. Preliminary structural analysis indicated CCP was mostly composed of neutral polysaccharides and proteins in a random-coiled conformation, which was also unchanged in the ingredients. CCP-stabilizing properties were tested, applying an innovative stress testing protocol. CCP strongly improved MCE anthocyanins solid-state stability (25 °C, 30% RH), and therefore it could be an innovative anthocyanins carrier system.

14.
Food Funct ; 13(8): 4344-4359, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35297930

RESUMO

There is an increasing need for new options to treat diabetes mellitus at its early stage and natural remedies have been recently reassessed as potential candidates owing to their low-cost and effectiveness. Genus Morus plants contain many active compounds with hypoglycaemic, hypolipidemic, and antioxidant effects. Current research on mulberry chemical composition and bioactivity has been generally carried out only on Asian cultivation, where this plant has been traditionally used in the form of leaf infusion for decades. In this work, twelve Italian mulberry cultivars were fully characterised to fill this gap of knowledge, since a strong correlation among composition, genetics and growing area was proven. Antiglycative and hypoglycaemic effects of leaf extracts were evaluated using different in vitro models. The results indicate that the inhibitory effect on carbohydrate digestive enzymes was likely mediated by 1-deoxynojirimycin, kaempferol, quercetin, and chlorogenic acid, acting in a synergistic way. Besides, the combined antiglycative and carbonyl trapping capacities, tested here for the first time, may help in preventing long-term complications related to AGEs in diabetic patients.


Assuntos
Diabetes Mellitus , Morus , Suplementos Nutricionais , Frutas/química , Humanos , Hipoglicemiantes/análise , Hipoglicemiantes/farmacologia , Morus/química , Extratos Vegetais/química , Folhas de Planta
15.
Front Nutr ; 9: 825584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223955

RESUMO

In this work a comparative study of the chemical composition and potential biological activity of high molecular weight (HMW) melanoidins isolated from instant soluble coffee (ISC) and instant soluble barley (ISB) was performed. ISB HMW melanoidins were almost exclusively composed by an ethanol soluble (EtSn) melanoidin fraction composed by glucose (76% w/w) partially susceptible to in vitro digestion, whereas ISC was composed mainly by arabinogalactans (~41% w/w) and lower amounts of galactomannans (~14% w/w) presenting a range of ethanol solubilities and resistant to in vitro digestion. Melanoidins from ISC presented a significantly higher content of condensed phenolic compounds (17/100 g) when compared to ISB (8/100 g) showing also a higher in vitro scavenging of ABTS•+ (329 mmol Trolox/100 g vs. 124 mmol Trolox/100 g) and NO radicals (inhibition percentage of 57 and 26%, respectively). Nevertheless, ISB EtSn melanoidins presented, on average a higher inhibitory effect on NO production from LPS-stimulated macrophages. ISB melanoidins, up to 1 mg/mL, did not induce toxicity in Caco-2, HepG2 and RAW 264.7 cell lines while at the highest concentration ISC slightly reduced cell viability. Thus, consumption of a diet rich in ISC and ISB melanoidins may reduce the oxidative stress, the inflammatory levels and increase the protective effects against chronic inflammatory diseases.

16.
Nat Prod Res ; 36(8): 2171-2176, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33176480

RESUMO

The phytochemical constituents in the aqueous methanolic leaf extract of Triclisia gilletii responsible for its nephroprotective potentials against ethane-1,2-diol induced nephrolithiasis as previously investigated in our laboratory were elucidated. The extract was prepared using 80% aqueous methanol in 72 h, Phytochemical contents of aqueous methanolic extract of Triclisia gilletii (TGME) was identified using both a Thermo Scientific DSQII single quadrupole gas chromatography (GC) and a Thermo Scientific liquid chromatography (LCQ Fleet system) tandem mass spectroscopy. The chromatogram acquisition, detection of mass spectral peaks and their waveform processing were performed using Xcalibur MS Software (Thermo Scientific Inc.). GC-MS analysis revealed the presence of phenols, fatty acids, vitamins and steroids. Likewise, for LC-MS analysis kaempferol and dihydrovomifoliol-O-glucoside were detected. The identified constituents have possible contributively effect on the acclaimed pharmacological potential of Triclisia gilletii against ethane-1,2-diol induced nephrolithiasis.


Assuntos
Menispermaceae , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metanol , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos
17.
Foods ; 10(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34359487

RESUMO

Moradyn is an Italian purple corn variety whose cobs represent a rich source of polyphenols. At the industrial level, they are used to produce a dried extract (MCE) by the addition of 20% Arabic gum. In order to evaluate the extract solid-state stability, an innovative accelerated stress protocol was developed following the isoconversion approach. The degradation kinetics of cyanidin-3-O-glucoside (C3G), the most suitable marker to monitor the overall MCE degradation status, was monitored under five temperature-humidity (RH) combinations. These data were used to build a mathematical model, able to estimate the C3G stability at 25 °C and 30% RH, whose predictiveness was further assessed by comparing the predicted vs. experimental C3G isoconversion time. Finally, by applying this model, the expiry date of the extract was calculated to be within 26-33 days, confirming that the addition of 20% Arabic gum is insufficient to stabilize MCE and highlighting the need of a new formula in order to prolong MCE shelf-life.

18.
Molecules ; 26(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361673

RESUMO

The agri-food sector produces a huge amount of agri-food wastes and by-products, with a consequent great impact on environmental, economic, social, and health aspects. The reuse and recycling of by-products represents a very important issue: for this reason, the development of innovative recovery and extraction methodologies must be mandatory. In this context of a circular economy, the study of green extraction techniques also becomes a priority in substitution of traditional extraction approaches. This review is focused on the recovery of chlorogenic acids from agri-food wastes, as these compounds have an important impact on human health, exhibiting several different and important healthy properties. Novel extraction methodologies, namely microwave and ultrasound-assisted extractions, supercritical fluid extraction, and pressurized-liquid extraction, are discussed here, in comparison with conventional techniques. The great potentialities of these new innovative green and sustainable approaches are pointed out. Further investigations and optimization are mandatory before their application in industrial processes.


Assuntos
Ácido Clorogênico , Cromatografia com Fluido Supercrítico/métodos , Alimentos , Química Verde/métodos , Extração Líquido-Líquido/métodos , Reciclagem/métodos , Eliminação de Resíduos/métodos , Agricultura , Humanos , Micro-Ondas , Ondas Ultrassônicas
19.
Food Funct ; 12(17): 7619-7636, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34250533

RESUMO

In vitro digestion models are essential to predictively evaluate the bioaccessibility and bioactivity of food molecules or natural products. Dynamic models better simulate the gastrointestinal conditions as they reproduce similar physiological environments. Despite this, static methods, also known as biochemical methods, represent a simple and useful approach for the study of different types of molecules, with a broad applicability in the nutritional, pharmaceutical, and toxicological fields. In addition, static models can be validated, avoiding the disadvantage of a difficult reproducibility of dynamic in vitro systems and inter-individual variations of in vivo experiments. A crucial point in the standardization of static models was the COST Action Infogest in 2014, which elaborated an international consensus static digestion method to harmonize experimental conditions and has general guidelines, thus allowing the comparison of studies and data. The aim of our review is to underline the impact of the Infogest consensus method and the development and evolution of in vitro static methods in the following years, with a focus on food applications.


Assuntos
Digestão , Técnicas In Vitro/economia , Técnicas In Vitro/normas , Animais , Trato Gastrointestinal/metabolismo , Guias como Assunto/normas , Humanos , Modelos Biológicos
20.
Environ Sci Pollut Res Int ; 28(20): 25349-25367, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33454827

RESUMO

Pergularia tomentosa L. (P. tomentosa) has been largely used in Tunisian folk medicine as remedies against skin diseases, asthma, and bronchitis. The main objectives of this study were to identify phytochemical compounds that have antioxidant and antimicrobial properties from the stem, leaves, and fruit crude methanolic extracts of P. tomentosa, and to search for tyrosyl-tRNA synthetase (TyrRS), topoisomerase type IIA, and Candidapepsin-1 (SAP1) enzyme inhibitors through molecular docking study. Phytochemical quantification revealed that fruit and leaves extracts displayed the highest total flavonoids (582 mg QE/g Ex; 219 mg QE/g Ex) and tannins content (375 mg TAE/g Ex; 216 mg TAE/g Ex), also exhibiting significant scavenging activity to decrease free radicals for ABTS, DPPH, ß-carotene, and FRAP assay with IC50 values (> 1 mg/mL). Additionally, promising antimicrobial activities towards different organs have been observed against several bacteria and Candida strains. From the liquid chromatography-mass spectrometry (LC-MS) analysis, five polyphenolic compounds, namely digitoxigenin, digitonin glycoside and calactina in the leaves, kaempferol in the fruit, and calotropagenin in the stems, were identified. They were also analyzed for their drug likeliness, based on computational methods. Molecular docking study affirmed that the binding affinity of calactin and actodigin to the active site of TyrRS, topoisomerase type IIA, and SAP1 target virulence proteins was the highest among the examined dominant compounds. Therefore, this study indicated that P. tomentosa methanolic extracts displayed great potential to become a potent antimicrobial agent and might be a promising source for therapeutic and nutritional functions. These phytocompounds could be further promoted as a candidate for drug discovery and development.


Assuntos
Anti-Infecciosos , Caryophyllaceae/classificação , Tirosina-tRNA Ligase , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Frutas , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Virulência , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...